论文标题

染色体反演的热力学和1亿年的Lachancea Evolution

Thermodynamics of chromosome inversions and 100 million years of Lachancea evolution

论文作者

Clark, B. K.

论文摘要

随着新的染色体反转的形式,Deme的基因序列随着时间的流逝而演变,其中一些将取代现有序列。产生这些突变的基本生化过程受热力学定律的控制,尽管热力学与突变的产生和传播之间的联系经常被忽略。在这里,染色体反演被建模为发展系统中突变的特定示例。化学势,能量和​​温度的热力学概念与包括反转率,重组损耗率和DEME大小的输入参数有关。现有基因序列替代的能量障碍是该模型的自然结果。最后,将模型计算与观察到的酵母兰甘西属的染色体反演分布进行了比较。这项工作中引入的模型应适用于不断发展的系统中的其他类型的突变。

Gene sequences of a deme evolve over time as new chromosome inversions appear in a population via mutations, some of which will replace an existing sequence. The underlying biochemical processes that generates these and other mutations are governed by the laws of thermodynamics, although the connection between thermodynamics and the generation and propagation of mutations are often neglected. Here, chromosome inversions are modeled as a specific example of mutations in an evolving system. The thermodynamic concepts of chemical potential, energy, and temperature are linked to the input parameters that include inversion rate, recombination loss rate and deme size. An energy barrier to existing gene sequence replacement is a natural consequence of the model. Finally, the model calculations are compared to the observed chromosome inversion distribution of the Lachancea genus of yeast. The model introduced in this work should be applicable to other types of mutations in evolving systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源