论文标题
火焰:跨多个设备环境的联合学习
FLAME: Federated Learning Across Multi-device Environments
论文作者
论文摘要
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的增加,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未研究FL,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越流行,因此需要研究其中的FL。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用FL客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的模型个性化。我们还提出了一个具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的基于类的数据分配方案,以将现有HAR数据集扩展到联合设置。我们对三个多设备HAR数据集的实验结果表明,火焰的表现优于F1得分,1.02-2.86倍高4.3-25.8%,能源效率提高1.02-2.86倍,并且通过公平分布通过FL工作负载,收敛的速度高达2.06倍。
Federated Learning (FL) enables distributed training of machine learning models while keeping personal data on user devices private. While we witness increasing applications of FL in the area of mobile sensing, such as human activity recognition (HAR), FL has not been studied in the context of a multi-device environment (MDE), wherein each user owns multiple data-producing devices. With the proliferation of mobile and wearable devices, MDEs are increasingly becoming popular in ubicomp settings, therefore necessitating the study of FL in them. FL in MDEs is characterized by being not independent and identically distributed (non-IID) across clients, complicated by the presence of both user and device heterogeneities. Further, ensuring efficient utilization of system resources on FL clients in a MDE remains an important challenge. In this paper, we propose FLAME, a user-centered FL training approach to counter statistical and system heterogeneity in MDEs, and bring consistency in inference performance across devices. FLAME features (i) user-centered FL training utilizing the time alignment across devices from the same user; (ii) accuracy- and efficiency-aware device selection; and (iii) model personalization to devices. We also present an FL evaluation testbed with realistic energy drain and network bandwidth profiles, and a novel class-based data partitioning scheme to extend existing HAR datasets to a federated setup. Our experiment results on three multi-device HAR datasets show that FLAME outperforms various baselines by 4.3-25.8% higher F1 score, 1.02-2.86x greater energy efficiency, and up to 2.06x speedup in convergence to target accuracy through fair distribution of the FL workload.