论文标题

寻找不确定形状的战舰

Finding a Battleship of Uncertain Shape

论文作者

Hainzl, Eva-Maria, Löffler, Maarten, Perz, Daniel, Tkadlec, Josef, Wallinger, Markus

论文摘要

在战舰游戏的驱动下,我们考虑了在大型比赛中有效击中不确定形状的船的问题。正式地,我们修复了\ {1,2 \} $中的尺寸$ d \。船是$ \ mathbb {z}^d $的子集。给定了一个家庭$ f $的船只,我们说,如果它与$ f $的每艘船相交的每艘船的每艘翻译(由$ \ mathbb {z}^d $),则无限子集$ x \ subset $ x \ subset $ x \ subset $ x \ subset $ x \ subset $ x \ subset $ x \ subset $ x \ subset $ x \ subset \ mathbb {z}^d $ pureces $ f $)。在这项工作中,我们研究了这种穿孔子集的最低(渐近)密度$π(f)$。据我们所知,此问题以前仅在特殊情况下仅在$ | f | = 1 $(一艘船)中进行了研究。作为我们的主要贡献,当$ f $由2艘2艘尺寸2的船只组成时,我们提供了一个$π(f)$的公式,并且在其他几种情况下,我们确定了最艰难的家庭。我们还实施了一种算法,以在1D中找到$π(f)$。

Motivated by a game of Battleship, we consider the problem of efficiently hitting a ship of an uncertain shape within a large playing board. Formally, we fix a dimension $d\in\{1,2\}$. A ship is a subset of $\mathbb{Z}^d$. Given a family $F$ of ships, we say that an infinite subset $X\subset\mathbb{Z}^d$ of the cells pierces $F$, if it intersects each translate of each ship in $F$ (by a vector in $\mathbb{Z}^d$). In this work, we study the lowest possible (asymptotic) density $π(F)$ of such a piercing subset. To our knowledge, this problem has previously been studied only in the special case $|F|=1$ (a single ship). As our main contribution, we present a formula for $π(F)$ when $F$ consists of 2 ships of size 2 each, and we identify the toughest families in several other cases. We also implement an algorithm for finding $π(F)$ in 1D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源