论文标题

明确相关的电子结构计算与超相关矩阵产品运营商

Explicitly correlated electronic structure calculations with transcorrelated matrix product operators

论文作者

Baiardi, Alberto, Lesiuk, Michał, Reiher, Markus

论文摘要

在这项工作中,我们介绍了通过密度矩阵重新归一化组(DMRG)算法的矩阵量态的优化过程中超相关电子哈密顿量的首次实现。在跨相关ANSATZ中,电子哈密顿量与jastrow因子相似,以描述电子电子合并时波函数中的尖尖。结果,从一颗粒子基础函数和Slater决定因素方面,波函数更容易与常规扩展准确地近似。第一次量化中的超相关哈密顿量包括多达三体相互作用,我们以标准方式处理了这一标准,通过将稳健的密度拟合应用于该汉密尔顿的第二定量表示的两体和三体积分。超相关的哈密顿人缺乏墓穴是按照超相关DMRG的第一批作品来照顾的[J.化学物理。 153,164115(2020)]通过将其编码为矩阵产品运算符,并使用具有假想时间的时间依赖性DMRG优化相应的基态波函数。我们在几个原子和第一行双原子分子的示例中证明了我们的量子化学超相关DMRG方法。我们表明,与常规DMRG相比,超相关提高了整体集合的收敛速率。此外,我们研究了我们的方法的扩展,旨在降低处理矩阵产品操作员代表的成本。

In this work, we present the first implementation of the transcorrelated electronic Hamiltonian in an optimization procedure for matrix product states by the density matrix renormalization group (DMRG) algorithm. In the transcorrelation ansatz, the electronic Hamiltonian is similarity-transformed with a Jastrow factor to describe the cusp in the wave function at electron-electron coalescence. As a result, the wave function is easier to approximate accurately with the conventional expansion in terms of one-particle basis functions and Slater determinants. The transcorrelated Hamiltonian in first quantization comprises up to three-body interactions, which we deal with in the standard way by applying robust density fitting to two- and three-body integrals entering the second-quantized representation of this Hamiltonian. The lack of hermiticity of the transcorrelated Hamiltonian is taken care of along the lines of the first work on transcorrelated DMRG [J. Chem. Phys. 153, 164115 (2020)] by encoding it as a matrix product operator and optimizing the corresponding ground state wave function with imaginary-time time-dependent DMRG. We demonstrate our quantum chemical transcorrelated DMRG approach at the example of several atoms and first-row diatomic molecules. We show that transcorrelation improves the convergence rate to the complete basis set limit in comparison to conventional DMRG. Moreover, we study extensions of our approach that aim at reducing the cost of handling the matrix product operator representation of the transcorrelated Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源