论文标题

摩尔斯图:用于分析机器人控制器全球动态的拓扑工具

Morse Graphs: Topological Tools for Analyzing the Global Dynamics of Robot Controllers

论文作者

Vieira, Ewerton R., Granados, Edgar, Sivaramakrishnan, Aravind, Gameiro, Marcio, Mischaikow, Konstantin, Bekris, Kostas E.

论文摘要

了解机器人控制器的全球动态,例如识别吸引子及其吸引力区域(ROA),对于安全部署和综合更有效的混合控制器很重要。本文提出了一个拓扑框架,以有效且可解释的方式分析机器人控制器,甚至是数据驱动器的全球动态。它构建了代表基础系统的状态空间和非线性动力学的组合表示形式,该动力学总结在有向的无环图中,即Morse图。该方法仅通过在状态空间离散化上向局部传播短轨迹来探测本地的动力学,这需要是lipschitz的连续函数。对经典机器人基准的数值或数据驱动的控制器进行了评估框架。将其与已建立的分析和最新的机器学习替代方法进行了比较,以估计此类控制器的ROA。证明它在准确性和效率方面表现优于它们。它还提供了更深层次的见解,因为它描述了离散化解决方案的全局动态。这允许使用Morse图来识别如何合成控制器以形成改进的混合解决方案或如何识别机器人系统的物理限制。

Understanding the global dynamics of a robot controller, such as identifying attractors and their regions of attraction (RoA), is important for safe deployment and synthesizing more effective hybrid controllers. This paper proposes a topological framework to analyze the global dynamics of robot controllers, even data-driven ones, in an effective and explainable way. It builds a combinatorial representation representing the underlying system's state space and non-linear dynamics, which is summarized in a directed acyclic graph, the Morse graph. The approach only probes the dynamics locally by forward propagating short trajectories over a state-space discretization, which needs to be a Lipschitz-continuous function. The framework is evaluated given either numerical or data-driven controllers for classical robotic benchmarks. It is compared against established analytical and recent machine learning alternatives for estimating the RoAs of such controllers. It is shown to outperform them in accuracy and efficiency. It also provides deeper insights as it describes the global dynamics up to the discretization's resolution. This allows to use the Morse graph to identify how to synthesize controllers to form improved hybrid solutions or how to identify the physical limitations of a robotic system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源