论文标题

对一维schrödinger方程中的最低本本函数采样以恢复电势

Sampling The Lowest Eigenfunction to Recover the Potential in a One-Dimensional Schrödinger Equation

论文作者

Rahm, Rob

论文摘要

我们考虑bvp $ -y“ + qy =λy$,$ y(0)= y(0)= y(1)= 0 $。逆频谱问题要求一个人从光谱信息中恢复$ q $。在本文中,我们提供了一种非常简单的方法来恢复潜在的方法,可以通过对一个特征功能进行采样来恢复潜在的频谱。频谱的相对范围是较大的信息。 \ textit {增加}),因此使用较低模式的数据也使我们可以从\ textit {一}边界条件中恢复“任何”潜力。

We consider the BVP $-y" + qy = λy$ with $y(0)=y(1)=0$. The inverse spectral problems asks one to recover $q$ from spectral information. In this paper, we present a very simple method to recover a potential by sampling one eigenfunction. The spectral asymptotics imply that for larger modes, more and more information is lost due to imprecise measurements (i.e. relative errors \textit{increases}) and so it is advantageous to use data from lower modes. Our method also allows us to recover "any" potential from \textit{one} boundary condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源