论文标题
用于数值Qubo公式的范围依赖性汉密尔顿算法
Range dependent Hamiltonian Algorithm for numerical QUBO formulation
论文作者
论文摘要
随着量子计算机的出现和开发,已经开发了比古典计算机更快地求解线性方程和特征值的各种量子算法。 Harrow-Hassidim-Lloyd算法是一种算法,可以在Gate Model量子计算机中求解线性方程。尽管如此,它仍会根据量子RAM的使用和根据量子计算机中的量子数总数的量子限制和矩阵的尺寸限制来限制。最近,Jun和Lee开发了一种QUBO模型,用于解决量子计算机中的线性系统和特征值问题。但是,即使他们的模型使用2048个Qubit,可以用于该问题的变量的量子数量仅为64。要解决此问题,我们引入了一种算法,可以通过根据量子数数来通过将整个域的大小划分来使用。我们还形成了与每个子区域相关的QUBO模型。
With the advent and development of quantum computers, various quantum algorithms that can solve linear equations and eigenvalues faster than classical computers have been developed. The Harrow-Hassidim-Lloyd algorithm is an algorithm that can solve linear equations in a gate model quantum computer. Still, it is constrained by the use of quantum RAM and the size limit of the matrix according to the total number of qubits in the quantum computer. Recently, Jun and Lee developed a QUBO model for solving linear systems and eigenvalue problems in the quantum computer. However, even though their model uses 2048 qubits, the number of qubits for variables that can be used for the problem is only 64. To solve this problem, we introduce an algorithm that can be used by dividing the size of the entire domain according to the number of qubits. We also form a QUBO model related to each subregion.