论文标题
结构形成和X奇迹的超重黑物质
Superheavy dark matter from structure formation and X miracle
论文作者
论文摘要
我们根据自由流量表(最小的结构尺度)和标准WIMP范式以外的“ X Miracle”提出了一种新的暗物质理论。两种方法都指向超重的费米尼暗物质,质量为$ 10^{12} $ gev。 Unlike low-mass WIMPs that are weakly interacting, semi-relativistic at freeze-out, and unaffected by gravity, the X miracle applies to heavy dark matter and incorporates gravitational effects, introducing a new fundamental scale $r_X=4\hbar^2/Gm_X^3=10^{-13}m\gg \hbar/m_Xc$, breaking the unitarity bound and allowing对于$ 10^{ - 21} $ m $^3 $/s的横截面。自由流质量的临界质量为$ 10^{12} $ gev,与粒子质量相匹配,使大爆炸后最早和最小的重力结构以$ 10^{ - 6} $ s形成。这些结构的崩溃可以释放结合能作为高频(100 kHz)重力波(GWS)或超轻肠尺度不足轴的结合能。超重的无菌中微子可能是自然的暗物质候选者,有可能解决中微子质量和男性生成。非平衡玻尔兹曼方程的解决方案表明,早期的暗物质歼灭或衰减,导致遗物DM丰度,其中一个有十亿个暗物质颗粒存活。这种情况为超高能量宇宙射线(UHECR)和哈勃张力提供了解释。 $ 10^{ - 21} $ m $^3 $/s的预测横截面,能源生产率密度为$ 10^{45} $ erg mpc $^{ - 3} $ yr $^{ - 1} $,而粒子寿命为$ 10^{23} $年度在UHECR限制内很好地观察。如果产生重力,这些超重X颗粒还表明高规模的通胀和有效的再加热。 X奇迹强调的是,暗物质不必是弱规模,而可能会从重力中出现,并具有UHECR,Axion,GWS和结构形成中的观察信号。
We propose a new theory of dark matter based on structure formation at the free-streaming scale (the smallest structure scale) and an "X miracle" beyond the standard WIMP paradigm. Both approaches point to superheavy fermionic dark matter with a mass of $10^{12}$ GeV. Unlike low-mass WIMPs that are weakly interacting, semi-relativistic at freeze-out, and unaffected by gravity, the X miracle applies to heavy dark matter and incorporates gravitational effects, introducing a new fundamental scale $r_X=4\hbar^2/Gm_X^3=10^{-13}m\gg \hbar/m_Xc$, breaking the unitarity bound and allowing for a cross section as large as $10^{-21}$m$^3$/s. At the critical mass of $10^{12}$GeV, the free streaming mass matches particle mass, enabling the earliest and smallest gravitationally bound structures to form at $10^{-6}$s after the Big Bang. The collapse of these structures can release binding energy as high-frequency (100 kHz) gravitational waves (GWs) or as ultralight GUT-scale underabundant axions. Superheavy sterile neutrinos could be natural dark matter candidates, potentially addressing neutrino mass and baryogenesis. Solutions to the nonequilibrium Boltzmann equation suggest a significant early dark matter annihilation or decay leading to a relic DM abundance, with one in a billion dark matter particles surviving. This scenario offers explanations for ultra-high-energy cosmic rays (UHECRs) and Hubble tension. The predicted cross sections of $10^{-21}$m$^3$/s, energy production rate density of $10^{45}$erg Mpc$^{-3}$ Yr$^{-1}$, and particle lifetime of $10^{23}$years are well within UHECR observational constraints. If gravitationally produced, these superheavy X particles also suggest high-scale inflation and efficient reheating. The X miracle highlights that dark matter need not be weak-scale but could emerge from gravity, with observational signals in UHECRs, axion, GWs, and structure formation.