论文标题
径向重组,用于图像和体积的刚性旋转对齐
Radial-recombination for rigid rotational alignment of images and volumes
论文作者
论文摘要
单个颗粒电子冷冻体镜检查(Cryo-EM)中的常见任务是图像和/或体积的刚性比对。在图像的上下文中,刚性对齐涉及估计$ n \ times n $像素的一个图像与另一个由某些位移翻译的图像之间的内部产物,并由某些角度$γ$旋转。在许多情况下,所考虑的旋转$γ$的数量很大(例如,$ \ Mathcal {o}(n)$),而所考虑的翻译数量较小(例如,$ \ Mathcal {O}(1)$)。在这些情况下,天真的算法需要$ \ Mathcal {o}(n^{3})$操作来计算每个图像对的内部产品数组。该计算可以通过使用傅立叶式贝塞尔和快速转换(FFT)来加速,只需要$ \ MATHCAL {O} {O}(n^2)$每个图像对操作。我们提出了一种简单的数据驱动压缩算法,以进一步加速该计算,我们称为“ radial-SVD”。我们的方法涉及将原始图像的不同环(以极地坐标表示)线性组合,利用奇异值分解(SVD)选择一个低级别组合,从而压缩图像并优化了角度可辨别性的一定程度。当将多个图像与多个目标对齐时,我们方法的复杂性为$ \ MATHCAL {o}(n(\ log(n)+h))$每个图像对,其中$ h $是上面压缩中使用的SVD的等级。这种方法获得的优势取决于$ h $和$ n $之间的比率;较小的$ h $更好。在许多应用中,$ h $可能比$ n $小得多,同时仍保持准确性。我们在一个冷冻EM应用程序中提出了数值结果,表明径向和学位-SVD可以帮助节省$ 5 $ - $ 10 $ - $ 10 $的图像和音量分配。
A common task in single particle electron cryomicroscopy (cryo-EM) is the rigid alignment of images and/or volumes. In the context of images, a rigid alignment involves estimating the inner-product between one image of $N\times N$ pixels and another image that has been translated by some displacement and rotated by some angle $γ$. In many situations the number of rotations $γ$ considered is large (e.g., $\mathcal{O}(N)$), while the number of translations considered is much smaller (e.g., $\mathcal{O}(1)$). In these scenarios a naive algorithm requires $\mathcal{O}(N^{3})$ operations to calculate the array of inner-products for each image-pair. This computation can be accelerated by using a fourier-bessel basis and the fast-fourier-transform (FFT), requiring only $\mathcal{O}(N^2)$ operations per image-pair. We propose a simple data-driven compression algorithm to further accelerate this computation, which we refer to as the `radial-SVD'. Our approach involves linearly-recombining the different rings of the original images (expressed in polar-coordinates), taking advantage of the singular-value-decomposition (SVD) to choose a low-rank combination which both compresses the images and optimizes a certain measure of angular discriminability. When aligning multiple images to multiple targets, the complexity of our approach is $\mathcal{O}(N(\log(N)+H))$ per image-pair, where $H$ is the rank of the SVD used in the compression above. The advantage gained by this approach depends on the ratio between $H$ and $N$; the smaller $H$ is the better. In many applications $H$ can be quite a bit smaller than $N$ while still maintaining accuracy. We present numerical results in a cryo-EM application demonstrating that the radial- and degree-SVD can help save a factor of $5$--$10$ for both image- and volume-alignment.