论文标题

3D海森贝格·弗罗格奈特(Heisenberg Ferromagnet)中的精确跳跃涡

Exact Hopfion Vortices in a 3D Heisenberg Ferromagnet

论文作者

Balakrishnan, Radha, Dandoloff, Rossen, Saxena, Avadh

论文摘要

我们找到了不均匀,各向异性三维海森贝格·弗罗格纳特(Heisenberg Ferromagnet)的单位自旋矢量场的确切静态孤子溶液。每个孤儿都由两个整数$ n $和$ m $标记。这是$ z = 0 $ n $ $ n $的$ z = 0 $平面中的(修改)的天空,它在$ z $ - 方向上扭曲了$ m $ $ times,成为3D Soliton。这里$ m $是由于定期边界条件在$ z $ boundaries处。我们使用Whitehead的积分表达式发现Soliton的HOPF不变是整数$ h = nm $。它代表了跳跃涡流。该拓扑孤儿的预图案的图表明,它们是毫无开关或非平凡的结,具体取决于$ n $和$ m $。任何一对前图曲线链接$ h $ times,证实了$ h $作为链接号码的解释。我们还计算了Hopfion Vortex的确切能量,并表明其拓扑下限对$ H $具有sublinear的依赖。使用Derrick的缩放分析,我们证明了各向异性相互作用中存在空间不均匀性的存在,进而引入了系统中的特征长度尺度,从而导致跳跃涡的稳定性。

We find exact static soliton solutions for the unit spin vector field of an inhomogeneous, anisotropic three-dimensional Heisenberg ferromagnet. Each soliton is labeled by two integers $n$ and $m$. It is a (modified) skyrmion in the $z=0$ plane with winding number $n$, which twists out of the plane $m$ times in the $z$-direction to become a 3D soliton. Here $m$ arises due to the periodic boundary condition at the $z$-boundaries. We use Whitehead's integral expression to find that the Hopf invariant of the soliton is an integer $H =nm$. It represents a hopfion vortex. Plots of the preimages of this topological soliton show that they are either unknots or nontrivial knots, depending on $n$ and $m$. Any pair of preimage curves links $H$ times, corroborating the interpretation of $H$ as a linking number. We also calculate the exact energy of the hopfion vortex, and show that its topological lower bound has a sublinear dependence on $H$. Using Derrick's scaling analysis, we demonstrate that the presence of a spatial inhomogeneity in the anisotropic interaction, which in turn introduces a characteristic length scale in the system, leads to the stability of the hopfion vortex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源