论文标题

多临界Schrödinger方程的积极解决方案

Positive solutions to multi-critical Schrödinger equations

论文作者

Xu, Ziyi, Yang, Jianfu

论文摘要

在本文中,我们研究了以下多临界schrödinger方程的多个积极解决方案\ begin {equation} \ label {p} \ begin {case} -ΔU+λv(x)u =μ| u |^{p-2} u++\ sum \ limits_ {i = 1}^{k} {k}(| x |^|^{ - (n-α_i)}*| u |^| u |^{2^{2^*_ i} \ Mathbb {r}^n,\\ \ qquad \ qquad \ qquad \ qquad \ qquad u \,\ \ in H^1(\ Mathbb {r}^n),\ end {cases} \ end {ement {equication {equation {equication},其中$λ,μ\ $ 2^*_ i = \ frac {n+α_i} {n-2} $,带有$ n-4 <α_i<n,\,\,i = 1,2,\ cdots,k $是关键指数,$ 2 <p <2^*_ {min} _ {min} = \ {2^\ \ \ \ \ \ {2^*^{2^*_ i:i:i:i = 1,1,2,2,假设$ω= int \,v^{ - 1}(0)\ subset \ mathbb {r}^n $是一个有界的域,我们表明,对于$λ$,大于$λ$,上面的问题至少具有$cat_Ω(ω)$阳性解决方案。

In this paper, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation \begin{equation} \label{p} \begin{cases} -Δu+λV(x)u=μ|u|^{p-2}u+\sum\limits_{i=1}^{k}(|x|^{-(N-α_i)}* |u|^{2^*_i})|u|^{2^*_i-2}u\quad \text{in}\ \mathbb{R}^N,\\ \qquad\qquad\qquad u\,\in H^1(\mathbb{R}^N), \end{cases} \end{equation} where $λ,μ\in \mathbb{R}^+, \, N\geqslant 4$, and $2^*_i=\frac{N+α_i}{N-2}$ with $N-4<α_i<N,\,i=1,2,\cdots,k$ are critical exponents and $2<p<2^*_{min}=\min\{2^*_i:i=1,2,\cdots,k\}$. Suppose that $Ω=int\,V^{-1}(0)\subset\mathbb{R}^N$ is a bounded domain, we show that for $λ$ large, problem above possesses at least $cat_Ω(Ω)$ positive solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源