论文标题
截短的多项式环上双模模型(1,4)的规范代数的模型
A model for the canonical algebras of bimodules type (1, 4) over truncated polynomial rings
论文作者
论文摘要
令$ k = \ mathbb {c}(\!(ε)\!)$是复杂的laurent系列的领域。我们使用Galois下降技术表明,$ K $上的$(1,\,4)$的简单常规表示自然而然地由$ \ Mathrm {spec}(k [x])(k [x])\ dot {\ cup} {\ cup} \ {1,\,\,\,2 \} $进行了参数。此外,我们为这些表示形式提供了弱的正常形式。我们使用简单常规表示的代表来描述与K上的类型(1,4)物种相关的规范代数。这表明了这些代数的模型,从盖斯,莱克莱克和施罗尔[GLS17]和[GLS20]的工作意义上。
Let $k=\mathbb{C}(\!(ε)\!)$ be the field of complex Laurent series. We use Galois descent techniques to show that the simple regular representations of the species of type $(1,\, 4)$ over $k$ are naturally parametrized by the closed points of $\mathrm{Spec}(k[x])\dot{\cup}\{1,\,2\}$. Moreover we provide weak normal forms for those representations. We use our representatives of the simple regular representations to describe the canonical algebras associated to the species of type (1, 4) over k. This suggest a model of those algebras in the sense of the work of Geiss, Leclerc and Schröer [GLS17] and [GLS20].