论文标题

基于预测模型的集体风电场运营增加了公用事业规模的能源生产

Collective wind farm operation based on a predictive model increases utility-scale energy production

论文作者

Howland, Michael F., Quesada, Jesus Bas, Martinez, Juan Jose Pena, Larranaga, Felipe Palou, Yadav, Neeraj, Chawla, Jasvipul S., Sivaram, Varun, Dabiri, John O.

论文摘要

位于风电场的风力涡轮机的运营是为了最大程度地发电。个人操作会导致唤醒损失减少农场能源。在这项研究中,我们集体操作风力涡轮机阵列,以通过唤醒转向最大化总阵列产生。农场控制策略的选择依赖于计算高效流模型的优化。我们开发了基于物理的,数据辅助流控制模型,以预测最佳控制策略。与以前的研究相反,我们首先在公用事业规模的风电场设计和实施多个月的实地实验,以在一系列控制策略中验证该模型,其中大多数是次优的。流量控制模型能够预测大多数风向(11-32%功率增益)+/- 5度内阵列内的最佳偏航未对准角。使用经过验证的模型,我们设计了一种控制协议,该协议在第二个多个月实验中增加了农场的能源生产,分别在6到8 m/s和所有风速的风速方向上,将感兴趣的风向和风速分别为风速。开发和验证的预测模型可以使集体风电场运营更广泛地采用。

Wind turbines located in wind farms are operated to maximize only their own power production. Individual operation results in wake losses that reduce farm energy. In this study, we operate a wind turbine array collectively to maximize total array production through wake steering. The selection of the farm control strategy relies on the optimization of computationally efficient flow models. We develop a physics-based, data-assisted flow control model to predict the optimal control strategy. In contrast to previous studies, we first design and implement a multi-month field experiment at a utility-scale wind farm to validate the model over a range of control strategies, most of which are suboptimal. The flow control model is able to predict the optimal yaw misalignment angles for the array within +/- 5 degrees for most wind directions (11-32% power gains). Using the validated model, we design a control protocol which increases the energy production of the farm in a second multi-month experiment by 2.7% and 1.0%, for the wind directions of interest and for wind speeds between 6 and 8 m/s and all wind speeds, respectively. The developed and validated predictive model can enable a wider adoption of collective wind farm operation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源