论文标题

PR-PL:一个新型的转移学习框架,具有基于脑电图的情感识别的基于典型代表的成对学习

PR-PL: A Novel Transfer Learning Framework with Prototypical Representation based Pairwise Learning for EEG-Based Emotion Recognition

论文作者

Zhou, Rushuang, Zhang, Zhiguo, Fu, Hong, Zhang, Li, Li, Linling, Huang, Gan, Dong, Yining, Li, Fali, Yang, Xin, Liang, Zhen

论文摘要

基于脑电图(EEG)的情感脑部计算机界面是情感计算领域的重要分支。但是,个体差异和嘈杂标签严重限制了基于脑电图的情绪识别模型的有效性和概括性。在本文中,我们提出了一个具有原型代表性的成对学习(PR-PL)的新型转移学习框架,以学习歧视性和广义的原型表述,以揭示跨个体的情感,并表达情感识别,以减轻对精确标签信息的依赖。在四个跨验验评估方案(跨主题跨主题,跨主题内部,主题内部跨主题和主题内部的跨主题跨主题,跨主题,跨主题和主题内)下,在两个基准数据库上进行了广泛的实验。实验结果表明,在所有四种评估方案下,提出的PR-PL与最先进的方面具有优势,这表明了PR-PL在应对情感研究中EEG反应的歧义方面的有效性和概括性。源代码可在https://github.com/kazabana/pr-pl上找到。

Affective brain-computer interfaces based on electroencephalography (EEG) is an important branch in the field of affective computing. However, individual differences and noisy labels seriously limit the effectiveness and generalizability of EEG-based emotion recognition models. In this paper, we propose a novel transfer learning framework with Prototypical Representation based Pairwise Learning (PR-PL) to learn discriminative and generalized prototypical representations for emotion revealing across individuals and formulate emotion recognition as pairwise learning for alleviating the reliance on precise label information. Extensive experiments are conducted on two benchmark databases under four cross-validation evaluation protocols (cross-subject cross-session, cross-subject within-session, within-subject cross-session, and within-subject within-session). The experimental results demonstrate the superiority of the proposed PR-PL against the state-of-the-arts under all four evaluation protocols, which shows the effectiveness and generalizability of PR-PL in dealing with the ambiguity of EEG responses in affective studies. The source code is available at https://github.com/KAZABANA/PR-PL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源