论文标题
Kähler公制流的切线流量
Tangent Flows of Kähler Metric Flows
论文作者
论文摘要
我们改进了$ \ mathbb {f} $的描述 - 在Kähler设置中未汇合的Ricci流的限制。特别是,此类度量流的单数级$ \ MATHCAL {s}^k $满足$ \ Mathcal {s}^{2J} = \ Mathcal {s}^{2J+1} $。我们还证明了定量地层的类似结果,并表明任何切线都允许异态分析中的非平凡的单参数作用,在静态情况下的圆锥链上局部无局部自由。主要的结果是使用基于几乎富含点的点的共轭热内核势函数的抛物线正规化,这可能具有独立的关注。
We improve the description of $\mathbb{F}$-limits of noncollapsed Ricci flows in the Kähler setting. In particular, the singular strata $\mathcal{S}^k$ of such metric flows satisfy $\mathcal{S}^{2j}=\mathcal{S}^{2j+1}$. We also prove an analogous result for quantitative strata, and show that any tangent flow admits a nontrivial one-parameter action by isometries, which is locally free on the cone link in the static case. The main results are established using parabolic regularizations of conjugate heat kernel potential functions based at almost-selfsimilar points, which may be of independent interest.