论文标题

从单一游戏的角度来看

Robust violation of a multipartite Bell inequality from the perspective of a single-system game

论文作者

He, Gang-Gang, Fan, Xing-Yan, Zhang, Fu-Lin

论文摘要

最近,fan \ textit {等} [mod。物理。 Lett。 A 36,2150223(2021)]提出了广义的Clauser-Horne-Horne-Holt(CHSH)不平等,以识别$ n $ qubit的Greenberger-Horne-Horne-Zeilinger(GHz)州。他们表明了一个有趣的现象,即在某些特定的噪音中,对广义CHSH不平等的最大侵犯是强大的。在这项工作中,我们将不等式映射到CHSH游戏,因此将其映射到单量系统中的Chsh*游戏中。该映射为$ n $ Qubit Systems中强大的违规行为提供了解释。也就是说,由于广义CHSH操作员的堕落而产生的强大违规对应于最大纠缠的两数分状态的对称性以及单Qubit游戏中的身份转换。这种解释使我们能够准确地证明退化为$ 2^{n-2} $。

Recently, Fan \textit{et al.} [Mod. Phys. Lett. A 36, 2150223 (2021)], presented a generalized Clauser-Horne-Shimony-Holt (CHSH) inequality, to identify $N$-qubit Greenberger-Horne-Zeilinger (GHZ) states. They showed an interesting phenomenon that the maximal violation of the generalized CHSH inequality is robust under some specific noises. In this work, we map the inequality to the CHSH game, and consequently to the CHSH* game in a single-qubit system. This mapping provides an explanation for the robust violations in $N$-qubit systems. Namely, the robust violations, resulting from the degeneracy of the generalized CHSH operators correspond to the symmetry of the maximally entangled two-qubit states and the identity transformation in the single-qubit game. This explanation enables us to exactly demonstrate that the degeneracy is $2^{N-2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源