论文标题
在Lorentzian连接和平行偏斜的扭转上
On Lorentzian connections with parallel skew torsion
论文作者
论文摘要
该论文专用于洛伦兹(Lorentzian)签名中的平行偏度对称扭转。这是由Riemannian签名的最新进展以及对超级实力理论的可能应用的动机。我们提供有关从里曼签名的载体代数,扭转和曲率与相应对象的完整信息。构建了各种示例。它显示了如何构造所有简单地连接的洛伦兹自然还原的均质均质空间,该空间是从riemannian自然还原性均匀空间中的任意维度的。这导致了洛伦兹(Lorentzian)自然还原均匀的空间的完整分类。
The paper is devoted to metric connections with parallel skew-symmetric torsion in Lorentzian signature. This is motivated by recent progress in the Riemannian signature and by possible applications to supergravity theories. We provide a complete information about holonomy algebras, torsion and curvature of the considered connections up to the corresponding objects from the Riemannian signature. Various examples are constructed. It is shown how to construct all simply connected Lorentzian naturally reductive homogeneous spaces of arbitrary dimension from Riemannian naturally reductive homogeneous spaces. This leads to complete classification of Lorentzian naturally reductive homogeneous spaces in low dimensions.