论文标题
来自最大交叉分解设计的多访问编码的缓存方案
Multi-Access Coded Caching Schemes from Maximal Cross Resolvable Designs
论文作者
论文摘要
我们研究了多访问编码缓存(MACC)的问题:中央服务器具有$ n $文件,$ k $($ k \ leq n $)缓存,每个缓存中的每个$ n $ files中的$ m $在$ n $ files中,每个$ k $用户每个用户都要求$ n $中的一个,每个用户访问$ z $ $ $ $ caches。目的是共同设计位置,交付和用户对缓存关联,以优化可实现的速率。该问题在文献中已被用户仅访问一个缓存的假设进行了广泛的研究。但是,当用户访问更多的缓存时,仅在用户访问$ z $的$ z $的缓存的假设下,对这个问题进行了研究。一个自然的问题是,其他用户对缓存关联如何与环绕用户对缓存关联关联进行票价。双方图可以描述一般的用户对缓存关联。我们确定了一类双方图形,当用作用户对缓存关联时,比使用环绕式包裹的用户对调查关联的所有其他现有MACC方案的率要么较低或子包装较低。 MACC方案的放置和交付策略是使用称为最大交叉分解设计的组合结构来构建的。
We study the problem of multi-access coded caching (MACC): a central server has $N$ files, $K$ ($K \leq N$) caches each of which stores $M$ out of the $N$ files, $K$ users each of which demands one out of the $N$ files, and each user accesses $z$ caches. The objective is to jointly design the placement, delivery, and user-to-cache association, to optimize the achievable rate. This problem has been extensively studied in the literature under the assumption that a user accesses only one cache. However, when a user accesses more caches, this problem has been studied only under the assumption that a user accesses $z$ consecutive caches with a cyclic wrap-around over the boundaries. A natural question is how other user-to-cache associations fare against the cyclic wrap-around user-to-cache association. A bipartite graph can describe a general user-to-cache association. We identify a class of bipartite graphs that, when used as a user-to-cache association, achieves either a lesser rate or a lesser subpacketization than all other existing MACC schemes using a cyclic wrap-around user-to-cache association. The placement and delivery strategy of our MACC scheme is constructed using a combinatorial structure called maximal cross resolvable design.