论文标题

在词典偏好下,多个合作伙伴匹配问题的强核和帕累托最佳解决方案

Strong core and Pareto-optimal solutions for the multiple partners matching problem under lexicographic preferences

论文作者

Biró, Péter, Csáji, Gergely

论文摘要

在匹配问题的多个合作伙伴中,代理商可以使多个合作伙伴达到其能力。在本文中,我们考虑了双面多面的稳定匹配问题,也考虑了在词典偏好下的单方面稳定固定装置问题。我们从计算的角度研究了这种设置的强核和帕累托最佳解决方案。首先,我们提供一个例子,以表明即使在这些严重的限制下,强大的核心也可以空无一人,而决定强核的非空置性是NP-HARD。我们还表明,对于给定的匹配检查帕累托(Pareto)截然不同性,强大的核心属性是多到多个问题的共同完全问题,并且决定存在完整的帕托托(Pareto)优化匹配也是固定装置问题的NP-HARD。在正面,我们提供了有效的算法来找到几乎可行的强核解决方案,在每个代理商中,最多只能侵犯一个容量,并且还可以在分数匹配的强核中找到半匹配。这些多项式时间算法基于顶级交易周期算法。最后,我们还表明,对于多到多个问题,找到最大尺寸匹配的帕累托最佳匹配可以有效地完成,这与固定装置问题的硬度结果相反。

In a multiple partners matching problem the agents can have multiple partners up to their capacities. In this paper we consider both the two-sided many-to-many stable matching problem and the one-sided stable fixtures problem under lexicographic preferences. We study strong core and Pareto-optimal solutions for this setting from a computational point of view. First we provide an example to show that the strong core can be empty even under these severe restrictions for many-to-many problems, and that deciding the non-emptiness of the strong core is NP-hard. We also show that for a given matching checking Pareto-optimality and the strong core properties are co-NP-complete problems for the many-to-many problem, and deciding the existence of a complete Pareto-optimal matching is also NP-hard for the fixtures problem. On the positive side, we give efficient algorithms for finding a near feasible strong core solution, where the capacities are only violated by at most one unit for each agent, and also for finding a half-matching in the strong core of fractional matchings. These polynomial time algorithms are based on the Top Trading Cycle algorithm. Finally, we also show that finding a maximum size matching that is Pareto-optimal can be done efficiently for many-to-many problems, which is in contrast with the hardness result for the fixtures problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源