论文标题
DFT+$ u $在数值原子轨道的线性组合框架内
DFT+$U$ within the framework of linear combination of numerical atomic orbitals
论文作者
论文摘要
我们在数值原子轨道(NAO)的线性组合框架内提出了DFT+\ textit {U}方法的公式和实现。我们的实施不仅可以实现单点的总能量和电子结构计算,而且还提供了对原子力和压力的访问,因此可以使周期系统的完整结构放松。此外,我们的实施使人们可以通过自旋耦合(SOC)效应来处理非连续性旋转纹理。当我们使用具有相同角动量的多个原子轨道时,我们实施背后的关键方面是对相关子空间的合适定义,并且通过$ d/f $ anguarl angular Mommenmum通道内的第一个(最本地化的)原子轨道构建的“ Mulliken电荷投影仪”来解决。重要的哈伯德$ u $和hund $ j $参数可以从Yukawa类型的筛选库仑电位估算出来,筛选参数可以选择半经验或从Thomas-Fermi筛选模型中确定。对四个后期过渡金属一氧化金属散装系统进行基准计算,即Mno,Feo,Coo和Nio,以及5 $ d $ d $ - 电子化合物IRO $ _2 $。对于以前的系统类型,我们检查了DFT+$ U $实现的性能,以计算带隙,磁矩,电子带结构以及力和压力;对于后者,评估了我们的DFT+$ u $+SOC实施的功效。系统的比较与可用的实验结果,尤其是在其他实施方案的结果中进行的,这证明了我们基于NAO的DFT+$ U $形式主义和实施的有效性。
We present a formulation and implementation of the DFT+\textit{U} method within the framework of linear combination of numerical atomic orbitals (NAO). Our implementation not only enables single-point total energy and electronic-structure calculations but also provides access to atomic forces and stresses, hence allowing for full structure relaxations of periodic systems. Furthermore, our implementation allows one to deal with non-collinear spin texture, with the spin-orbit coupling (SOC) effect treated self-consistently. The key aspect behind our implementation is a suitable definition of the correlated subspace when multiple atomic orbitals with the same angular momentum are used, and this is addressed via the "Mulliken charge projector" constructed in terms of the first (most localized) atomic orbital within the $d/f$ angular momentum channel. The important Hubbard $U$ and Hund $J$ parameters can be estimated from a screened Coulomb potential of the Yukawa type, with the screening parameter either chosen semi-empirically or determined from the Thomas-Fermi screening model. Benchmark calculations are performed for four late transition metal monoxide bulk systems, i.e., MnO, FeO, CoO, and NiO, and for the 5$d$-electron compounds IrO$_2$. For the former type of systems, we check the performance of our DFT+$U$ implementation for calculating band gaps, magnetic moments, electronic band structures, as well as forces and stresses; for the latter, the efficacy of our DFT+$U$+SOC implementation is assessed. Systematic comparisons with available experimental results, and especially with the results from other implementation schemes are carried out, which demonstrate the validity of our NAO-based DFT+$U$ formalism and implementation.