论文标题
推断具有自旋的中子星星孔系统中的中子恒星最大质量和较低的质量间隙
Inferring the neutron star maximum mass and lower mass gap in neutron star-black hole systems with spin
论文作者
论文摘要
合并中子星 - 黑洞(NSBH)系统的重力波(GW)检测探测天体物理中性星(NS)和黑洞(BH)质量分布,尤其是在NS和BH质量之间的过渡时期。特别值得关注的是最大NS质量,最小BH质量以及它们之间的潜在质量差距。尽管以前的GW人群分析假设所有NS遵守相同的最大质量,但如果存在迅速旋转的NS,则可以扩展到比非替代NSS更大的最大质量。实际上,几位作者提出,在此事件中,$ \ sim2.6 \,m_ \ odot $对象是GW190814(迄今为止观察到的最大的NS或最不重要的BH),是一个快速旋转的NS。因此,我们将NSBH质量分布与NS旋转分布共同推断,从而对NS最大质量进行建模是自旋的函数。如果我们假设NS旋转分布均匀分布到最大(分解)旋转,则使用4个LIGO-VIRGO NSBH NSBH事件,包括GW190814,我们推断出最大的非旋转NS质量为$ 2.7^{+0.5} _ {+0.5} _ { - 0.4}质量必须为$> 2.53 m_ \ odot $(90 \%信誉)。数据支持质量差距的存在,最低BH质量为$ 5.4^{+0.7} _ { - 1.0} m_ \ odot $。通过未来的观察,在简化的假设下,150个NSBH事件可能会将最大非质量质量限制为$ \ pm0.02 \,m_ \ odot $,我们甚至可以完全从GW数据中衡量NS旋转和最大质量之间的关系。如果存在快速旋转的NS,则必须同时对其自旋和质量进行建模,以避免偏向NS最大质量。
Gravitational-wave (GW) detections of merging neutron star-black hole (NSBH) systems probe astrophysical neutron star (NS) and black hole (BH) mass distributions, especially at the transition between NS and BH masses. Of particular interest are the maximum NS mass, minimum BH mass, and potential mass gap between them. While previous GW population analyses assumed all NSs obey the same maximum mass, if rapidly spinning NSs exist, they can extend to larger maximum masses than nonspinning NSs. In fact, several authors have proposed that the $\sim2.6\,M_\odot$ object in the event GW190814 -- either the most massive NS or least massive BH observed to date -- is a rapidly spinning NS. We therefore infer the NSBH mass distribution jointly with the NS spin distribution, modeling the NS maximum mass as a function of spin. Using 4 LIGO-Virgo NSBH events including GW190814, if we assume that the NS spin distribution is uniformly distributed up to the maximum (breakup) spin, we infer the maximum non-spinning NS mass is $2.7^{+0.5}_{-0.4}\,M_\odot$ (90\% credibility), while assuming only nonspinning NSs, the NS maximum mass must be $>2.53 M_\odot$ (90\% credibility). The data support the mass gap's existence, with a minimum BH mass at $5.4^{+0.7}_{-1.0} M_\odot$. With future observations, under simplified assumptions, 150 NSBH events may constrain the maximum nonspinning NS mass to $\pm0.02\,M_\odot$, and we may even measure the relation between the NS spin and maximum mass entirely from GW data. If rapidly rotating NSs exist, their spins and masses must be modeled simultaneously to avoid biasing the NS maximum mass.