论文标题

DeepSSN:一个深卷积神经网络,用于评估空间场景相似性

DeepSSN: a deep convolutional neural network to assess spatial scene similarity

论文作者

Guo, Danhuai, Ge, Shiyin, Zhang, Shu, Gao, Song, Tao, Ran, Wang, Yangang

论文摘要

空间疑问是一种直观的工具,可以探索人类有关地理环境的空间知识并支持与场景数据库查询的通信。但是,传统的基于素描的空间搜索方法由于无法从心理草图中找到隐藏的多尺度地图功能而执行不足。在这项研究中,我们提出了一个深度卷积神经网络,即深空场景网络(DEEPSSN),以更好地评估空间场景相似性。在DeepSSN中,三胞胎损耗函数被设计为一个综合距离度量,以支持相似性评估。在空间推理中使用定性约束网络的积极和负面的示例策略旨在确保在训练过程中持续增加三胞胎的区别。此外,我们使用拟议的DeepSSN开发了原型的空间场景搜索系统,在该系统中,用户通过草图映射输入空间查询,该系统可以自动增加草图训练数据。使用多源汇合的地图数据验证了所提出的模型,包括131,300个标记的场景样本后。经验结果表明,使用平均互惠等级和精度指标,DeepSN的表现优于基线方法,包括K-Nearest-near-near-near-near-deignbors,多层感知器,Alexnet,Densenet和Resnet。这项研究通过介绍一种针对空间场景查询量身定制的新型深度学习方法来推进地理信息检索研究。

Spatial-query-by-sketch is an intuitive tool to explore human spatial knowledge about geographic environments and to support communication with scene database queries. However, traditional sketch-based spatial search methods perform insufficiently due to their inability to find hidden multi-scale map features from mental sketches. In this research, we propose a deep convolutional neural network, namely Deep Spatial Scene Network (DeepSSN), to better assess the spatial scene similarity. In DeepSSN, a triplet loss function is designed as a comprehensive distance metric to support the similarity assessment. A positive and negative example mining strategy using qualitative constraint networks in spatial reasoning is designed to ensure a consistently increasing distinction of triplets during the training process. Moreover, we develop a prototype spatial scene search system using the proposed DeepSSN, in which the users input spatial query via sketch maps and the system can automatically augment the sketch training data. The proposed model is validated using multi-source conflated map data including 131,300 labeled scene samples after data augmentation. The empirical results demonstrate that the DeepSSN outperforms baseline methods including k-nearest-neighbors, multilayer perceptron, AlexNet, DenseNet, and ResNet using mean reciprocal rank and precision metrics. This research advances geographic information retrieval studies by introducing a novel deep learning method tailored to spatial scene queries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源