论文标题

有限场上的正定矩阵

Positive-Definite Matrices over Finite Fields

论文作者

Cooper, Joshua, Hanna, Erin, Whitlatch, Hays

论文摘要

对阳性矩阵的研究集中在Hermitian矩阵上,即具有复杂(或真实)条目的正方形矩阵,等于其自身的共轭转置。在经典环境中,正定矩阵享有许多等效的定义和属性。在本文中,我们调查了一个正方形的对称矩阵何时将来自有限领域的条目称为“正数”,并讨论哪些经典等价和含义延续了。

The study of positive-definite matrices has focused on Hermitian matrices, that is, square matrices with complex (or real) entries that are equal to their own conjugate transposes. In the classical setting, positive-definite matrices enjoy a multitude of equivalent definitions and properties. In this paper, we investigate when a square, symmetric matrix with entries coming from a finite field can be called "positive-definite" and discuss which of the classical equivalences and implications carry over.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源