论文标题
从上下文示例中学习最大 - SAT以进行组合优化
Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation
论文作者
论文摘要
组合优化问题在人工智能中无处不在。但是,设计基础模型需要实质性的专业知识,这是实践中的一个限制因素。这些模型通常由硬和软约束组成,或将硬约束与目标函数相结合。我们介绍了一个新颖的设置,用于从上下文示例中学习组合优化问题。这些正面和负面的例子表明 - 在特定情况下 - 解决方案是否足够好。我们使用Max-Sat形式主义开发框架,因为它具有简单而功能强大的设置,具有这些功能。我们研究最大 - SAT模型的可学习性。我们的理论结果表明,只要数据满足直观的“代表性”条件,就可以从可实现且不可知论设置中的上下文示例中学到高质量的最大SAT模型。我们还根据我们的理论结果贡献了两个实现:一种利用语法引导的综合观念,而另一个利用了随机的本地搜索技术。通过从上下文示例中恢复合成和基准模型来评估这两个实现。实验结果支持我们的理论分析,表明可以从上下文示例中学到最大SAT模型。在这两个实现中,随机的本地搜索学习者比语法引导的实现要好得多,同时提供了可比或更好的模型。
Combinatorial optimisation problems are ubiquitous in artificial intelligence. Designing the underlying models, however, requires substantial expertise, which is a limiting factor in practice. The models typically consist of hard and soft constraints, or combine hard constraints with an objective function. We introduce a novel setting for learning combinatorial optimisation problems from contextual examples. These positive and negative examples show - in a particular context - whether the solutions are good enough or not. We develop our framework using the MAX-SAT formalism as it is simple yet powerful setting having these features. We study the learnability of MAX-SAT models. Our theoretical results show that high-quality MAX-SAT models can be learned from contextual examples in the realisable and agnostic settings, as long as the data satisfies an intuitive "representativeness" condition. We also contribute two implementations based on our theoretical results: one leverages ideas from syntax-guided synthesis while the other makes use of stochastic local search techniques. The two implementations are evaluated by recovering synthetic and benchmark models from contextual examples. The experimental results support our theoretical analysis, showing that MAX-SAT models can be learned from contextual examples. Among the two implementations, the stochastic local search learner scales much better than the syntax-guided implementation while providing comparable or better models.