论文标题
乳腺癌筛查技术的调查:热力计和电阻抗断层扫描
A Survey of Breast Cancer Screening Techniques: Thermography and Electrical Impedance Tomography
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Breast cancer is a disease that threatens many women's life, thus, early and accurate detection plays a key role in reducing the mortality rate. Mammography stands as the reference technique for breast cancer screening; nevertheless, many countries still lack access to mammograms due to economic, social, and cultural issues. Last advances in computational tools, infrared cameras, and devices for bio-impedance quantification allowed the development of parallel techniques like thermography, infrared imaging, and electrical impedance tomography, these being faster, reliable and cheaper. In the last decades, these have been considered as complement procedures for breast cancer diagnosis, where many studies concluded that false positive and false negative rates are greatly reduced. This work aims to review the last breakthroughs about the three above-mentioned techniques describing the benefits of mixing several computational skills to obtain a better global performance. In addition, we provide a comparison between several machine learning techniques applied to breast cancer diagnosis going from logistic regression, decision trees, and random forest to artificial, deep, and convolutional neural networks. Finally, it is mentioned several recommendations for 3D breast simulations, pre-processing techniques, biomedical devices in the research field, prediction of tumor location and size.