论文标题
二次开放费用系统中非局部运算符的确切动态相关性:一种特征函数方法
Exact dynamical correlations of nonlocal operators in quadratic open Fermion systems: a characteristic function approach
论文作者
论文摘要
一般二次开放式费米昂系统中非本地运算符的动态相关性仍然是一个挑战性的问题。在这里,我们通过开发开放费用多体系统的新表述来解决这个问题,即特征功能方法。说明了该技术,我们分析了一个有限的Kitaev链,并考虑任何人型非本地激发。我们给出了绿色功能的明确公式,证明了由Anyon统计参数引起的不对称光锥,并使用此参数提高了松弛率。我们还分析了一些其他类型的非局部运算符相关性,例如电荷数的完整计数统计数据,以及从真空状态的淬火中回声。前者显示出非平衡量子相变的明确特征,而后来在某些关键时期表现出尖端,因此显示了动态的量子相变。
The dynamical correlations of nonlocal operators in general quadratic open fermion systems is still a challenging problem. Here we tackle this problem by developing a new formulation of open fermion many-body systems, namely, the characteristic function approach. Illustrating the technique, we analyze a finite Kitaev chain with boundary dissipation and consider anyon-type nonlocal excitations. We give explicit formula for the Green's functions, demonstrating an asymmetric light cone induced by the anyon statistical parameter and an increasing relaxation rate with this parameter. We also analyze some other types of nonlocal operator correlations such as the full counting statistics of the charge number and the Loschmidt echo in a quench from the vacuum state. The former shows clear signature of a nonequilibrium quantum phase transition, while the later exhibits cusps at some critical times and hence demonstrates dynamical quantum phase transitions.