论文标题
量子中心限制定理,经典性的出现和时间相关的差分熵
Quantum Central Limit Theorems, Emergence of Classicality and Time-dependent Differential Entropy
论文作者
论文摘要
我们得出了一些量子中央限制定理,以示出宏观粗粒的可观察物的预期值,这些可观察到是粗粒冬污物算子的函数。得益于Hermicity的限制,我们获得了可观察到的期望值的正定分布。这些概率分布为在无限数量的相同和非相互作用的量子成分的极限下的出现开辟了一些途径。这与由于环境的破裂和一致的历史而引起的其他经典出现机制相矛盾。如此得出的概率分布也使我们能够评估某些差分熵的非平凡时间依赖性。
We derive some Quantum Central Limit Theorems for expectation values of macroscopically coarse-grained observables, which are functions of coarse-grained hermitean operators. Thanks to the hermicity constraints, we obtain positive-definite distribution for the expectation values of observables. These probability distributions open some pathway for an emergence of classical behaviours in the limit of infinitely large number of identical and non-interacting quantum constituents. This is in contradistinction to other mechanisms of classicality emergence due to environmental decoherence and consistent histories. The probability distributions so derived also enable us to evaluate the nontrivial time-dependence of certain differential entropies.