论文标题
通过上下文知识的动态模型概括为新的物理系统
Generalizing to New Physical Systems via Context-Informed Dynamics Model
论文作者
论文摘要
建模物理系统的数据驱动方法无法推广到与学习域共享相同一般动态的看不见的系统,但与不同的物理环境相对应。我们为此关键问题提出了一个新的框架,即上下文知识的动态适应(CODA),该框架考虑了跨系统的分布转移,以快速有效地适应新动态。 CODA利用多种环境,每个环境都与不同的动态相关联,并学会将动态模型定为上下文参数(特定于每个环境)。调节是通过超网络进行的,并从观察到的数据与上下文向量共同学习。所提出的公式限制了搜索假设空间,以促进跨环境的快速适应和更好的概括。从理论上讲,我们激励我们的方法,并在一组非线性动力学上显示出最新的概括结果,这是多种应用领域的代表。在这些系统上,我们还显示,可以通过最小的监督从上下文向量推断出新的系统参数。代码可在https://github.com/yuan-yin/coda上找到。
Data-driven approaches to modeling physical systems fail to generalize to unseen systems that share the same general dynamics with the learning domain, but correspond to different physical contexts. We propose a new framework for this key problem, context-informed dynamics adaptation (CoDA), which takes into account the distributional shift across systems for fast and efficient adaptation to new dynamics. CoDA leverages multiple environments, each associated to a different dynamic, and learns to condition the dynamics model on contextual parameters, specific to each environment. The conditioning is performed via a hypernetwork, learned jointly with a context vector from observed data. The proposed formulation constrains the search hypothesis space to foster fast adaptation and better generalization across environments. We theoretically motivate our approach and show state-of-the-art generalization results on a set of nonlinear dynamics, representative of a variety of application domains. We also show, on these systems, that new system parameters can be inferred from context vectors with minimal supervision. Code is available at https://github.com/yuan-yin/CoDA .