论文标题
2D嵌入纳米颗粒复合材料中的声子散射和振动定位
Phonon scattering and vibrational localization in 2D embedded nanoparticle composites
论文作者
论文摘要
在这项工作中,频域完全匹配的层方法(FDPML)启用了一种陆路方法,用于在一系列具有随机嵌入纳米颗粒的大型2D域中研究声子传输,这些纳米粒子在宽范围内纳米颗粒载荷和波长。纳米颗粒堆积密度对平均自由路径和定位长度的影响是表征的。我们观察到,在MIE散射状态下,独立散射近似是有效的,直至超过10%的体积分数,并且通常取决于散射参数,这表明通常可以使用数量密度和单个散射器的散射横截面来计算平均自由路径。我们还研究了定位长度及其对颗粒载荷的依赖。对于较轻的矩阵中的重颗粒,我们只能使用Landauer方法在体积分数下观察到本地化,并且仅在高频模式下,超过了嵌入式纳米颗粒的振动频率。使用模态分析,我们表明,在纳米颗粒中的定位主要是由于能量限制而不是安德森定位。随后,我们表明,通过在重型基质中使用光颗粒,可以大大增加限制模式的比例。
In this work, a Landauer approach enabled by the Frequency Domain Perfectly Matched Layer Method (FDPML) is used to study phonon transport in a series of large 2D domains with randomly embedded nanoparticles over a wide range of nanoparticle loadings and wavelengths. The effect of nanoparticle packing density on the mean free path and localization length is characterized. We observe that in the Mie scattering regime, the independent scattering approximation is valid up to volume fractions exceeding 10% and often higher depending on scattering parameter, indicating the mean free path can usually be calculated much less expensively using the number density and the scattering cross-section of a single scatterer. We also study localization lengths and their dependence on particle loading. In the case of heavy particles in a lighter matrix, we have been able to observe localization only at volume fractions >30% using the Landauer approach and only for high frequency modes, exceeding the vibration frequencies of the embedded nanoparticles. Using modal analysis we show that localization in nanoparticle laden materials is primarily due to energetic confinement rather than Anderson localization. Subsequently, we show that by using light particles in a heavy matrix the fraction of confined modes can be substantially increased.