论文标题
无限零和定理
An infinitary Zero sum theorem
论文作者
论文摘要
Erdős-Ginzburg-Ziv定理说,如果给出了2N-1数,则有n个数字,因此它们的总和除以n。我们将将该定理与Ramsey理论大型集合联系起来,并将证明该定理的无限版本。在我们的证明中,我们将使用Ultrafters的方法。但是,可以使用拓扑动力学方法进行。
Erdős-Ginzburg-Ziv theorem says that if there are 2n-1 number is given, then there are n numbers such that their sum is divided by n. We will connect this theorem with the Ramsey theoretic large sets and will prove an infinitary version of this theorem. In our proof we will use the methods of ultrafilters. But one may proceed using methods of Topological dynamics.