论文标题
检索基于方案的以任务为导向的语义解析的填充
Retrieve-and-Fill for Scenario-based Task-Oriented Semantic Parsing
论文作者
论文摘要
近年来,以任务为导向的语义解析模型取得了出色的成果,但不幸的是,模型大小,运行时延迟和跨域的概括性之间并没有达到吸引人的平衡。我们通过引入基于方案的语义解析来解决这个问题:原始任务的变体,首先需要在生成其框架之前,将话语的“场景”(带有可变叶子跨度的意图模板)与本体论和说服令牌一起产生。该公式使我们能够隔离任务的粗粒和细粒度的方面,每个任务都使用现成的神经模块求解,也可以优化上面概述的轴。具体而言,我们创建了一个检索和填充(RAF)架构,该体系结构由(1)检索模块组成,该模块在说话的情况下对最佳方案进行排名,以及(2)填充模块,该模块将跨越跨越的方案中创建框架。我们的模型是模块化的,可区分的,可解释的,并允许我们从方案中获得额外的监督。 RAF在高资源,低资源和多语言设置中取得了强劲的成果,尽管使用基本的预训练的编码器,较小的序列长度和平行解码,但除了广泛的边缘,远远优于最近的方法。
Task-oriented semantic parsing models have achieved strong results in recent years, but unfortunately do not strike an appealing balance between model size, runtime latency, and cross-domain generalizability. We tackle this problem by introducing scenario-based semantic parsing: a variant of the original task which first requires disambiguating an utterance's "scenario" (an intent-slot template with variable leaf spans) before generating its frame, complete with ontology and utterance tokens. This formulation enables us to isolate coarse-grained and fine-grained aspects of the task, each of which we solve with off-the-shelf neural modules, also optimizing for the axes outlined above. Concretely, we create a Retrieve-and-Fill (RAF) architecture comprised of (1) a retrieval module which ranks the best scenario given an utterance and (2) a filling module which imputes spans into the scenario to create the frame. Our model is modular, differentiable, interpretable, and allows us to garner extra supervision from scenarios. RAF achieves strong results in high-resource, low-resource, and multilingual settings, outperforming recent approaches by wide margins despite, using base pre-trained encoders, small sequence lengths, and parallel decoding.