论文标题

正规化坐标MLP

On Regularizing Coordinate-MLPs

论文作者

Ramasinghe, Sameera, MacDonald, Lachlan, Lucey, Simon

论文摘要

我们表明,对深神经网络的典型隐式正则假设(用于回归)不适合坐标MLP,这是一个MLP家族,现在在计算机视觉中无处不在,用于表示高频信号。缺乏这种隐式偏见会破坏训练样本之间的平滑插值,并在不同光谱的信号区域中概括了缩减。我们通过傅立叶镜头研究这种行为,并发现随着坐标的增强,除非明确提供合适的先验,否则较低的频率往往会被抑制。基于这些见解,我们提出了一种简单的正则化技术,可以减轻上述问题,可以将其纳入现有网络而无需进行任何架构修改。

We show that typical implicit regularization assumptions for deep neural networks (for regression) do not hold for coordinate-MLPs, a family of MLPs that are now ubiquitous in computer vision for representing high-frequency signals. Lack of such implicit bias disrupts smooth interpolations between training samples, and hampers generalizing across signal regions with different spectra. We investigate this behavior through a Fourier lens and uncover that as the bandwidth of a coordinate-MLP is enhanced, lower frequencies tend to get suppressed unless a suitable prior is provided explicitly. Based on these insights, we propose a simple regularization technique that can mitigate the above problem, which can be incorporated into existing networks without any architectural modifications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源