论文标题

$ c^*$ - 纠缠破坏地图的极端点

$C^*$-extreme points of entanglement breaking maps

论文作者

Bhat, B. V. Rajarama, Devendra, Repana, Mallick, Nirupama, Sumesh, K.

论文摘要

在本文中,我们研究了矩阵代数上的$ c^*$ - 凸出的纠缠破裂(EB-)地图。讨论了$ c^*$ - 极端点的一般属性和抽象表征。通过为一类EB-MAPS建立radon-nikodym类型定理,我们对$ c^*$ - 极端点进行了完整的描述。结果表明,一个Unital EB-MAP $φ:m_ {d_1} \ to m_ {d_2} $是$ c^*$ - 极限 - 仅当它的cho-r​​ank等于$ d_2 $时。最后,作为EB-MAPS孔形式的直接结果,我们得出了Krein-Milman定理的非共同类似物,以$ C^*$ - 一组Unital Eb-Maps的凸度。

In this paper we study the $C^*$-convex set of unital entanglement breaking (EB-)maps on matrix algebras. General properties and an abstract characterization of $C^*$-extreme points are discussed. By establishing a Radon-Nikodym type theorem for a class of EB-maps we give a complete description of the $C^*$-extreme points. It is shown that a unital EB-map $Φ:M_{d_1}\to M_{d_2}$ is $C^*$-extreme if and only if it has Choi-rank equal to $d_2$. Finally, as a direct consequence of the Holevo form of EB-maps, we derive a noncommutative analogue of the Krein-Milman theorem for $C^*$-convexity of the set of unital EB-maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源