论文标题
使用变分的深图像先验的盲图像反卷积
Blind Image Deconvolution Using Variational Deep Image Prior
论文作者
论文摘要
常规的反卷积方法利用手工制作的图像先验来限制优化。尽管基于深度学习的方法通过端到端培训简化了优化,但它们无法很好地概括地在培训数据集中看不见。因此,训练特异性模型对于更高的概括很重要。深图像先验(DIP)提供了一种方法,可以通过最大后验(MAP)优化具有单个降级图像的随机初始化网络的权重,该网络表明网络的体系结构可以作为手工制作的图像先验。与统计上获得的传统手工制作的图像先验不同,很难找到适当的网络体系结构,因为图像及其相应的网络体系结构之间的关系尚不清楚。结果,网络体系结构无法为潜在尖锐图像提供足够的约束。本文提出了用于盲图像反卷积的新变化深图像先验(VDIP),该图像在潜在的锋利图像上利用了添加剂手工制作的图像先验,并近似每个像素的分布以避免使用次优溶液。我们的数学分析表明,所提出的方法可以更好地限制优化。实验结果进一步表明,生成的图像的质量比基准数据集上的原始DIP的质量更好。我们的VDIP的源代码可在https://github.com/dong-huo/vdip-deconvolution上获得。
Conventional deconvolution methods utilize hand-crafted image priors to constrain the optimization. While deep-learning-based methods have simplified the optimization by end-to-end training, they fail to generalize well to blurs unseen in the training dataset. Thus, training image-specific models is important for higher generalization. Deep image prior (DIP) provides an approach to optimize the weights of a randomly initialized network with a single degraded image by maximum a posteriori (MAP), which shows that the architecture of a network can serve as the hand-crafted image prior. Different from the conventional hand-crafted image priors that are statistically obtained, it is hard to find a proper network architecture because the relationship between images and their corresponding network architectures is unclear. As a result, the network architecture cannot provide enough constraint for the latent sharp image. This paper proposes a new variational deep image prior (VDIP) for blind image deconvolution, which exploits additive hand-crafted image priors on latent sharp images and approximates a distribution for each pixel to avoid suboptimal solutions. Our mathematical analysis shows that the proposed method can better constrain the optimization. The experimental results further demonstrate that the generated images have better quality than that of the original DIP on benchmark datasets. The source code of our VDIP is available at https://github.com/Dong-Huo/VDIP-Deconvolution.