论文标题
使用开源软件的房屋阀建模的计算框架
A Computational Framework for Atrioventricular Valve Modeling using Open-Source Software
论文作者
论文摘要
房屋瓣膜瓣膜反流是熟悉和先天性心脏瓣膜疾病患者发病率和死亡率的重要原因。在过去的十年中,房屋瓣膜的图像衍生的计算建模已大大提高,并具有特殊的承诺,可以为小型和异质种群的阀修复提供信息,而通过经验临床应用进行优化的阀门修复。尽管大量的计算生物力学研究研究了成年人的二尖瓣和三尖瓣疾病,但很少有研究研究对脆弱的儿科和先天性心脏人群的应用。此外,迄今为止,研究人员主要依靠一系列商业应用,这些应用既不是为心脏阀的图像衍生建模而设计的,也不可以自由地促进透明且可再现的阀科学。为了解决这一缺陷,我们旨在建立一个开源计算框架,用于对室内瓣膜的图像衍生的生物力学分析。在目前的工作中,我们集成了一个开源阀建模平台SlicerHeart,以及开源的生物力学有限元建模软件Febio,以促进图像衍生的房屋室内阀门模型创建和有限元分析。我们提出了详细的验证和灵敏度分析,以证明该建模在应用于3D超声心动图衍生的小儿二尖瓣和三尖瓣模型中的保真度。我们的分析与文献报道的分析达成了极好的一致性。因此,这个不断发展的计算框架为未来的开发和调查阀机械提供了一个有希望的初始基础,特别是针对改善先天性心脏病儿童维修的协作努力。
Atrioventricular valve regurgitation is a significant cause of morbidity and mortality in patients with acquired and congenital cardiac valve disease. Image-derived computational modeling of atrioventricular valves has advanced substantially over the last decade and holds particular promise to inform valve repair in small and heterogeneous populations which are less likely to be optimized through empiric clinical application. While an abundance of computational biomechanics studies have investigated mitral and tricuspid valve disease in adults, few studies have investigated application to vulnerable pediatric and congenital heart populations. Further, to date, investigators have primarily relied upon a series of commercial applications that are neither designed for image-derived modeling of cardiac valves, nor freely available to facilitate transparent and reproducible valve science. To address this deficiency, we aimed to build an open-source computational framework for the image-derived biomechanical analysis of atrioventricular valves. In the present work, we integrated an open-source valve modeling platform, SlicerHeart, and an open-source biomechanics finite element modeling software, FEBio, to facilitate image-derived atrioventricular valve model creation and finite element analysis. We present a detailed verification and sensitivity analysis to demonstrate the fidelity of this modeling in application to 3D echocardiography-derived pediatric mitral and tricuspid valve models. Our analyses achieved excellent agreement with those reported in the literature. As such, this evolving computational framework offers a promising initial foundation for future development and investigation of valve mechanics, in particular collaborative efforts targeting the development of improved repairs for children with congenital heart disease.