论文标题

大小方方相干:一种有力的工具,可从恒星活动中发现多普勒行星的发现

Magnitude-squared coherence: A powerful tool for disentangling Doppler planet discoveries from stellar activity

论文作者

Dodson-Robinson, Sarah E., Delgado, Victor Ramirez, Harrell, Justin, Haley, Charlotte

论文摘要

如果多普勒搜索地球质量,那么可居住的行星将取得成功,观察者必须能够识别和建模出色的活动信号。在这里,我们通过计算活动指标时间序列$ x_t $和径向速度(RV)时间序列$ y_t $之间的幅度方相干$ \ hat $ \ hat {c}^2_ {xy}(f)$来诊断活动信号。由于行星仅在RV中引起调制,而不在活动指示器中,因此高值为$ \ hat {c}^2_ {xy}(f)$表示频率$ f $的信号具有出色的来源。我们使用韦尔奇的方法来测量活动指标和RV之间的相干性在GJ 581,Alpha Cen B和GJ 3998中的档案观察中。我们还复制了先前的结果,表明GJ 581 D和G是旋转谐波,并证明alpha cen B具有与旋转无关的活性信号。 Welch的功率谱估计比Lomb-Scargle期间图具有更干净的光谱窗口,从而提高了我们估计旋转期的能力。我们发现GJ 581的旋转周期为132天,没有差异差的证据。韦尔奇的方法可能会产生$ n <75 $观测值的数据集的巨大偏见,并且在$ n> 100 $的数据集上最有效。逐渐减少时域数据可以减少韦尔奇功率谱估计器的偏差,但是观察者不应将龙头应用于具有极为不平衡的观察节奏的数据集。用于计算幅度平方相干性和韦尔奇的功率谱估计的软件包可在GitHub上获得。

If Doppler searches for earth-mass, habitable planets are to succeed, observers must be able to identify and model out stellar activity signals. Here we demonstrate how to diagnose activity signals by calculating the magnitude-squared coherence $\hat{C}^2_{xy}(f)$ between an activity indicator time series $x_t$ and the radial velocity (RV) time series $y_t$. Since planets only cause modulation in RV, not in activity indicators, a high value of $\hat{C}^2_{xy}(f)$ indicates that the signal at frequency $f$ has a stellar origin. We use Welch's method to measure coherence between activity indicators and RVs in archival observations of GJ 581, alpha Cen B, and GJ 3998. High RV-H$α$ coherence at the frequency of GJ 3998 b, and high RV-S index coherence at the frequency of GJ 3998 c, indicate that the planets may actually be stellar signals. We also replicate previous results showing that GJ 581 d and g are rotation harmonics and demonstrate that alpha Cen B has activity signals that are not associated with rotation. Welch's power spectrum estimates have cleaner spectral windows than Lomb-Scargle periodograms, improving our ability to estimate rotation periods. We find that the rotation period of GJ 581 is 132 days, with no evidence of differential rotation. Welch's method may yield unacceptably large bias for datasets with $N < 75$ observations and works best on datasets with $N > 100$. Tapering the time-domain data can reduce the bias of the Welch's power spectrum estimator, but observers should not apply tapers to datasets with extremely uneven observing cadence. A software package for calculating magnitude-squared coherence and Welch's power spectrum estimates is available on github.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源