论文标题

差异的扭转和伯杰的猜想

Torsion in Differentials and Berger's Conjecture

论文作者

Huneke, Craig, Maitra, Sarasij, Mukundan, Vivek

论文摘要

令$(R,\ Mathfrak {M},\ Mathbb {k})$为一个纯净的一维的一维本地域,这是一个代数封闭的字段$ \ MATHBB {k}特征的特征0。R.Berger R. R. Berger猜测R r ushs us r and Plessine if If and If and If and Inflice of Indinite $ nise $ $ - $ y是$ $ a $ a a $ a a t a $ a a。我们通过扩展Güttes的作品(Arch Math 54:499-510,1990)和Cortiñas等人提供了这种猜想的新案例。 (Math Z 228:569-588, 1998).This is obtained by constructing a new subring $S$ of $\operatorname{Hom}_R(\mathfrak{m},\mathfrak{m})$ and constructing enough torsion in $Ω_S$, enabling us to pull back a nontrivial torsion to $Ω_R$.

Let $(R,\mathfrak{m},\mathbb{k})$ be an equicharacteristic one-dimensional complete local domain over an algebraically closed field $\mathbb{k}$ of characteristic 0. R. Berger conjectured that R is regular if and only if the universally finite module of differentials $Ω_R$ is a torsion-free $R$-module. We give new cases of this conjecture by extending works of Güttes (Arch Math 54:499-510, 1990) and Cortiñas et al. (Math Z 228:569-588, 1998).This is obtained by constructing a new subring $S$ of $\operatorname{Hom}_R(\mathfrak{m},\mathfrak{m})$ and constructing enough torsion in $Ω_S$, enabling us to pull back a nontrivial torsion to $Ω_R$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源