论文标题
通过错误的沟通链接联合学习
Federated Learning with Erroneous Communication Links
论文作者
论文摘要
在本文中,我们考虑了在存在沟通错误的情况下联邦学习(FL)问题。我们通过数据包擦除通道对设备和中央节点(CN)之间的链接进行建模,在该通道中,来自设备的局部参数分别由CN删除或正确接收,分别以概率$ε$和$1-ε$进行。我们证明了在存在通信错误的情况下的FL算法,如果未从设备收到新鲜算法,则CN使用过去的本地更新,将FL算法收敛到没有任何通信错误而收敛到相同的全局参数。我们提供了几个模拟结果来验证我们的理论分析。我们还表明,当数据集均匀分布在设备之间时,仅使用新的更新和放弃丢失更新的FL算法可能比使用过去的本地更新的FL算法更快。
In this paper, we consider the federated learning (FL) problem in the presence of communication errors. We model the link between the devices and the central node (CN) by a packet erasure channel, where the local parameters from devices are either erased or received correctly by CN with probability $ε$ and $1-ε$, respectively. We proved that the FL algorithm in the presence of communication errors, where the CN uses the past local update if the fresh one is not received from a device, converges to the same global parameter as that the FL algorithm converges to without any communication error. We provide several simulation results to validate our theoretical analysis. We also show that when the dataset is uniformly distributed among devices, the FL algorithm that only uses fresh updates and discards missing updates might converge faster than the FL algorithm that uses past local updates.