论文标题

多项式生长的谎言基团振荡奇异积分的界限

Boundedness of oscillating singular integrals on Lie groups of polynomial growth

论文作者

Cardona, Duván, Ruzhansky, Michael

论文摘要

我们研究了多项式生长的谎言基团振荡奇异积分的界限,以扩展由于Fefferman和Stein引起的经典振荡条件,以延长振动卷积算子的界限。内核标准是根据与载体场的Hörmander系统相关的次拉普拉斯(Sub-Laplacian)诱导的群体中的固定次摩曼尼亚结构提出的。在对小组进行评分的情况下,以与任意的Rockland运营商相关的傅立叶分析来提出内核标准。

We investigate the boundedness of oscillating singular integrals on Lie groups of polynomial growth in order to extend the classical oscillating conditions due to Fefferman and Stein for the boundedness of oscillating convolution operators. Kernel criteria are presented in terms of a fixed sub-Riemannian structure on the group induced by a sub-Laplacian associated to a Hörmander system of vector fields. In the case where the group is graded, kernel criteria are presented in terms of the Fourier analysis associated to an arbitrary Rockland operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源