论文标题

用冰球测量的空气阵雨中的GEVμ子密度

Density of GeV muons in air showers measured with IceTop

论文作者

Abbasi, R., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., Alameddine, J. M., Alves Jr., A. A., Amin, N. M., Andeen, K., Anderson, T., Anton, G., Argüelles, C., Ashida, Y., Axani, S., Bai, X., V., A. Balagopal, Barwick, S. W., Bastian, B., Basu, V., Baur, S., Bay, R., Beatty, J. J., Becker, K. -H., Tjus, J. Becker, Beise, J., Bellenghi, C., Benda, S., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Binder, G., Bindig, D., Blaufuss, E., Blot, S., Boddenberg, M., Bontempo, F., Borowka, J., Böser, S., Botner, O., Böttcher, J., Bourbeau, E., Bradascio, F., Braun, J., Brinson, B., Bron, S., Brostean-Kaiser, J., Browne, S., Burgman, A., Burley, R. T., Busse, R. S., Campana, M. A., Carnie-Bronca, E. G., Chen, C., Chen, Z., Chirkin, D., Choi, K., Clark, B. A., Clark, K., Classen, L., Coleman, A., Collin, G. H., Conrad, J. M., Coppin, P., Correa, P., Cowen, D. F., Cross, R., Dappen, C., Dave, P., De Clercq, C., DeLaunay, J. J., López, D. Delgado, Dembinski, H., Deoskar, K., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., de With, M., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dittmer, M., Dujmovic, H., Dunkman, M., DuVernois, M. A., Ehrhardt, T., Eller, P., Engel, R., Erpenbeck, H., Evans, J., Evenson, P. A., Fan, K. L., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Fienberg, A. T., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Friedman, E., Fritz, A., Fürst, P., Gaisser, T. K., Gallagher, J., Ganster, E., Garcia, A., Garrappa, S., Gerhardt, L., Ghadimi, A., Glaser, C., Glauch, T., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Grant, D., Grégoire, T., Griswold, S., Günther, C., Gutjahr, P., Haack, C., Hallgren, A., Halliday, R., Halve, L., Halzen, F., Minh, M. Ha, Hanson, K., Hardin, J., Harnisch, A. A., Haungs, A., Hebecker, D., Helbing, K., Henningsen, F., Hettinger, E. C., Hickford, S., Hignight, J., Hill, C., Hill, G. C., Hoffman, K. D., Hoffmann, R., Hoshina, K., Huang, F., Huber, M., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., In, S., Iovine, N., Ishihara, A., Jansson, M., Japaridze, G. S., Jeong, M., Jin, M., Jones, B. J. P., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katz, U., Kauer, M., Kellermann, M., Kelley, J. L., Kheirandish, A., Kin, K., Kintscher, T., Kiryluk, J., Klein, S. R., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Kopper, S., Koskinen, D. J., Koundal, P., Kovacevich, M., Kowalski, M., Kozynets, T., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lanfranchi, J. L., Larson, M. J., Lauber, F., Lazar, J. P., Lee, J. W., Leonard, K., Leszczyńska, A., Li, Y., Lincetto, M., Liu, Q. R., Liubarska, M., Lohfink, E., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Ludwig, A., Luszczak, W., Lyu, Y., Ma, W. Y., Madsen, J., Mahn, K. B. M., Makino, Y., Mancina, S., Mari{ş}, I. C., Martinez-Soler, I., Maruyama, R., McCarthy, S., McElroy, T., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Meighen-Berger, S., Micallef, J., Mockler, D., Montaruli, T., Moore, R. W., Morse, R., Moulai, M., Naab, R., Nagai, R., Naumann, U., Necker, J., Nguy{\~{ê}}n, L. V., Niederhausen, H., Nisa, M. U., Nowicki, S. C., Pollmann, A. Obertacke, Oehler, M., Oeyen, B., Olivas, A., O'Sullivan, E., Pandya, H., Pankova, D. V., Park, N., Parker, G. K., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Peters, L., Peterson, J., Philippen, S., Pieper, S., Pittermann, M., Pizzuto, A., Plum, M., Popovych, Y., Porcelli, A., Rodriguez, M. Prado, Pries, B., Przybylski, G. T., Raab, C., Rack-Helleis, J., Raissi, A., Rameez, M., Rawlins, K., Rea, I. C., Rechav, Z., Rehman, A., Reichherzer, P., Reimann, R., Renzi, G., Resconi, E., Reusch, S., Rhode, W., Richman, M., Riedel, B., Roberts, E. J., Robertson, S., Roellinghoff, G., Rongen, M., Rott, C., Ruhe, T., Ryckbosch, D., Cantu, D. Rysewyk, Safa, I., Saffer, J., Herrera, S. E. Sanchez, Sandrock, A., Santander, M., Sarkar, S., Sarkar, S., Satalecka, K., Schaufel, M., Schieler, H., Schindler, S., Schmidt, T., Schneider, A., Schneider, J., Schröder, F. G., Schumacher, L., Schwefer, G., Sclafani, S., Seckel, D., Seunarine, S., Sharma, A., Shefali, S., Shimizu, N., Silva, M., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Soldin, D., Spannfellner, C., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Stein, R., Stettner, J., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Thwaites, J., Tilav, S., Tischbein, F., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Tselengidou, M., Tung, C. F., Turcati, A., Turcotte, R., Turley, C. F., Twagirayezu, J. P., Ty, B., Elorrieta, M. A. Unland, Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Veitch-Michaelis, J., Verpoest, S., Walck, C., Wang, W., Watson, T. B., Weaver, C., Weigel, P., Weindl, A., Weiss, M. J., Weldert, J., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Wolf, M., Wrede, G., Wulff, J., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Yu, S., Yuan, T., Zhang, Z., Zhelnin, P.

论文摘要

我们使用South Pole的Icetop阵列记录了三年的数据,介绍了近垂直空气阵雨中GEV MUON的密度的测量。根据淋浴尺寸,在200 m至1000 m之间的横向距离处测量了muon密度。从这些横向分布中,我们在2.5 PEV和40 PEV之间以及9 PEV和120 PEV之间的一级能量分别得出了600 m和800 m的能量功能。使用基线的雄性相互作用模型sibyll 2.1与各种组成模型一起确定了muon密度。测量与这些基线相互作用和组成模型中预测的雄性密度一致。使用LHC后的EPOS-LHC和QGSJET-II.04进行了比较,测得的MUON密度与模拟进行了比较。这种比较的结果是,LHC后模型以及任何给定的组成模型产生的哑光密度高于观察到的高度。这与1 EEV高于1 EEV的观测值相反,在该观察值中,所有模型模拟的质量组成的所有模拟都比测量值低。一般而言,LHC后的模型具有较高的MUON密度,因此可以改善与最高能量的实验数据的一致性,但在2.5 PEV之间的能量范围内,MUON密度不正确。

We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 m and 1000 m. From these lateral distributions, we derive the muon densities as functions of energy at reference distances of 600 m and 800 m for primary energies between 2.5 PeV and 40 PeV and between 9 PeV and 120 PeV, respectively. The muon densities are determined using, as a baseline, the hadronic interaction model Sibyll 2.1 together with various composition models. The measurements are consistent with the predicted muon densities within these baseline interaction and composition models. The measured muon densities have also been compared to simulations using the post-LHC models EPOS-LHC and QGSJet-II.04. The result of this comparison is that the post-LHC models together with any given composition model yield higher muon densities than observed. This is in contrast to the observations above 1 EeV where all model simulations yield for any mass composition lower muon densities than the measured ones. The post-LHC models in general feature higher muon densities so that the agreement with experimental data at the highest energies is improved but the muon densities are not correct in the energy range between 2.5 PeV and about 100 PeV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源