论文标题

ADC-NET:一个开源深度学习网络,用于光学连贯性层析成像中的自动色散补偿

ADC-Net: An Open-Source Deep Learning Network for Automated Dispersion Compensation in Optical Coherence Tomography

论文作者

Ahmed, Shaiban, Le, David, Son, Taeyoon, Adejumo, Tobiloba, Yao, Xincheng, Engineering, Department of Biomedical, Chicago, University of Illinois at, Ophthalmology, Department of, Science, Visual, Chicago, University of Illinois at

论文摘要

色散是降低光学相干断层扫描(OCT)中系统分辨率的常见问题。这项研究是为了开发一个十月的自动分散补偿(ADC-net)的深度学习网络。 ADC-NET基于重新设计的UNET体系结构,该体系结构采用编码器解码器管道。输入部分包括优化的单个视网膜层部分补偿OCT B扫描。相应的输出是所有视网膜层优化的完全补偿的OCT B扫描。使用了两个数字参数,即峰信号与噪声比(PSNR)和在多个尺度上计算的结构相似性指数(MS-SSSIM),用于对ADC-NET性能的客观评估。对培训模型的比较分析,包括单个,三个,五个,七和九输入通道。五输入渠道的实现被视为ADC-NET训练的最佳模式,以实现OCT的强大分散补偿

Chromatic dispersion is a common problem to degrade the system resolution in optical coherence tomography (OCT). This study is to develop a deep learning network for automated dispersion compensation (ADC-Net) in OCT. The ADC-Net is based on a redesigned UNet architecture which employs an encoder-decoder pipeline. The input section encompasses partially compensated OCT B-scans with individual retinal layers optimized. Corresponding output is a fully compensated OCT B-scans with all retinal layers optimized. Two numeric parameters, i.e., peak signal to noise ratio (PSNR) and structural similarity index metric computed at multiple scales (MS-SSIM), were used for objective assessment of the ADC-Net performance. Comparative analysis of training models, including single, three, five, seven and nine input channels were implemented. The five-input channels implementation was observed as the optimal mode for ADC-Net training to achieve robust dispersion compensation in OCT

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源