论文标题

使用修补的绿色功能技术基于广义的rényi熵的目标全波倒置

Target-oriented full-waveform inversion based on generalized Rényi entropy using patched Green's function techniques

论文作者

Barbosa, Wagner A., da Silva, Sérgio Luiz E. F., de la Barra, Erick, de Araújo, João M.

论文摘要

数据分析中物理参数的估计是许多复杂系统描述和建模的关键点。基于Rényi$α$ -Gaussian分布和修补的Green功能(PGF)技术,我们使用基于波浪方程的方法论为全波倒置(FWI)提出了一个可靠的数据倒置框架。我们通过考虑两种截然不同的p波速度模型来展示提案的有效性,其中第一个速度在安哥拉的宽扎盆地中受到启发,第二个是在巴西前萨尔特山脉领域具有巨大经济利益的第二个地区。我们通过缩写$α$ -PGF-FWI称我们的建议。结果表明,$α$ -PGF-FWI在限制$α\ rightarrow 2/3 $中,对添加剂高斯噪声和非高斯噪声具有强大的功能,为$α$rényientropic Index。

The estimation of physical parameters from data analysis is a crucial point for the description and modeling of many complex systems. Based on Rényi $α$-Gaussian distribution and patched Green's function (PGF) techniques, we propose a robust framework for data inversion using a wave-equation based methodology named full-waveform inversion (FWI). We show the effectiveness of our proposal by considering two distinct realistic P-wave velocity models, in which the first one is inspired in the Kwanza Basin in Angola and the second in a region of great economic interest in the Brazilian pre-salt field. We call our proposal by the abbreviation $α$-PGF-FWI. The results reveal that the $α$-PGF-FWI is robust against additive Gaussian noise and non-Gaussian noise with outliers in the limit $α\rightarrow 2/3$, being $α$ the Rényi entropic index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源