论文标题

Ehrhart的铺路和Panhandle Matroids理论

Ehrhart Theory of Paving and Panhandle Matroids

论文作者

Hanely, Derek, Martin, Jeremy L., McGinnis, Daniel, Miyata, Dane, Nasr, George D., Vindas-Meléndez, Andrés R., Yin, Mei

论文摘要

我们表明,可以通过切除某些子聚类的某些子聚类,即晶格路径矩阵的基础多台面,即从超简短中系统地获得任何铺路矩阵$ m $的基本多层$ p_m $。我们计算了这些矩形的ehrhart多项式,并因此写下了$ p_m $的ehrhart多项式,从katzman的ehrhart for the ehrhart for the hypersimplex的多项式开始。该方法建立在Ferroni在稀疏铺路的曲霉上的工作。结合起来,我们的结构对应于通过迭代Ferroni,Nasr和Vecchi引入的压力高空弛豫的操作来构建均匀的基金会,该释放是标准的基矩形理论的电路 - 浅平宽松。我们提供的证据表明,Panhandle Matroid是Ehrhart阳性的,并描述了涉及链森林和欧拉尔数字的猜想组合公式,而Panhandle Matroid将从中ehrhart阳性。作为主要结果的应用,我们计算了与施泰纳系统和有限的投射平面相关的矩形的ehrhart多项式,并证明它们仅依赖于其设计理论参数:例如,相同顺序的投射平面所需的投射平面不需要具有异晶性matroids,而基本的基础多型必须是ehrhart ehrhart。

We show that the base polytope $P_M$ of any paving matroid $M$ can be systematically obtained from a hypersimplex by slicing off certain subpolytopes, namely base polytopes of lattice path matroids corresponding to panhandle-shaped Ferrers diagrams. We calculate the Ehrhart polynomials of these matroids and consequently write down the Ehrhart polynomial of $P_M$, starting with Katzman's formula for the Ehrhart polynomial of a hypersimplex. The method builds on and generalizes Ferroni's work on sparse paving matroids. Combinatorially, our construction corresponds to constructing a uniform matroid from a paving matroid by iterating the operation of stressed-hyperplane relaxation introduced by Ferroni, Nasr, and Vecchi, which generalizes the standard matroid-theoretic notion of circuit-hyperplane relaxation. We present evidence that panhandle matroids are Ehrhart positive and describe a conjectured combinatorial formula involving chain forests and Eulerian numbers from which Ehrhart positivity of panhandle matroids will follow. As an application of the main result, we calculate the Ehrhart polynomials of matroids associated with Steiner systems and finite projective planes, and show that they depend only on their design-theoretic parameters: for example, while projective planes of the same order need not have isomorphic matroids, their base polytopes must be Ehrhart equivalent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源