论文标题
关于库恩振幅的单位性和低能扩展
On the unitarity and low energy expansion of the Coon amplitude
论文作者
论文摘要
COON振幅是委内兹亚诺幅度与对数型轨迹和光谱中的积累点的变形,该幅度在弦理论和田间理论之间进行了插值。借助字符串理论,它是明确已知的二元性约束的唯一其他解决方案,并且构成了现代S-Matrix Bootstrap中的重要数据点。但是,其基本属性本质上是未知的。在本文中,我们填补了这一空白,并得出了振幅的阳性条件和低能量膨胀的条件。在积极方面,我们发现振幅从在所有维度上为正的策略转换为具有临界维度的制度的策略,在删除变形时,它连接到已知的$ d = 26,10 $。 En passant,我们发现,委内斯幅度可以将其扩展到最高$ m^2 = 1/3 $的大量质量标量,其中它具有关键的维度6.3。在低能量的一面,我们根据$ q $ formed的类似物的标准riemann zeta值的类似物计算了该理论的前几个核。我们在EFTHEDRON中找到了它们的位置,并与最近的猜想达成一致,即具有积累点的理论填充了这一空间。我们还讨论了它们与低自旋优势的关系。
The Coon amplitude is a deformation of the Veneziano amplitude with logarithmic Regge trajectories and an accumulation point in the spectrum, which interpolates between string theory and field theory. With string theory, it is the only other solution to duality constraints explicitly known and it constitutes an important data point in the modern S-matrix bootstrap. Yet, its basics properties are essentially unknown. In this paper we fill this gap and derive the conditions of positivity and the low energy expansion of the amplitude. On the positivity side, we discover that the amplitude switches from a regime where it is positive in all dimensions to a regime with critical dimensions, that connects to the known $d = 26, 10$ when the deformation is removed. En passant, we find that the Veneziano amplitudes can be extended to massive scalars of masses up to $m^2 = 1/3$, where it has critical dimension 6.3. On the low-energy side, we compute the first few coupligs of the theory in terms of $q$-deformed analogues of the standard Riemann zeta values of the string expansion. We locate their location in the EFT-hedron, and find agreement with a recent conjecture that theories with accumulation points populate this space. We also discuss their relation to low spin dominance.