论文标题
使用扫描纳米探针衍射,揭示电子和X射线辐射与卤化物钙钛矿半导体的相互作用机制
Unveiling the interaction mechanisms of electron and X-ray radiation with halide perovskite semiconductors using scanning nano-probe diffraction
论文作者
论文摘要
高能电子和X射线光子与软半导体(如卤化物钙钛矿)的相互作用对于对这些光电材料的表征和理解至关重要。使用纳米探针衍射技术,可以研究纳米级的物理特性,我们对电子与X射线辐射与最新的相互作用进行研究(fa $ _ {0.79} $ ma $ _ {0.16} $ cs $ _ {0.05} $)我们使用扫描电子衍射和同步纳米X射线衍射技术来跟踪局部晶体结构的变化,这是局部晶体结构的变化。我们确定钙钛矿晶粒,从中,与pbbr $ _2 $相对应的其他反射是在〜200 e $^ - $^$^$^{ - 2} $的晶体降解阶段出现的。这些变化与在相邻的高角度晶界处形成小PBI $ _2 $ Crystallites,以及针孔的形成,以及从四方到立方的相变。类似的降解途径是由纳米X射线衍射中的光子照射引起的,这表明了常见的潜在机制。我们的方法探索了这些材料的辐射极限,并提供了纳米级降解途径的描述。解决高角度晶界对于进一步改善卤化物多晶膜稳定性至关重要,尤其是对于容易受到高能辐射(例如空间光伏电动机)的应用。
The interaction of high-energy electrons and X-ray photons with soft semiconductors such as halide perovskites is essential for the characterisation and understanding of these optoelectronic materials. Using nano-probe diffraction techniques, which can investigate physical properties on the nanoscale, we perform studies of the interaction of electron and X-ray radiation with state-of-the-art (FA$_{0.79}$MA$_{0.16}$Cs$_{0.05}$)Pb(I$_{0.83}$Br$_{0.17}$)$_3$ hybrid halide perovskite films (FA, formamidinium; MA, methylammonium). We track the changes in the local crystal structure as a function of fluence using scanning electron diffraction and synchrotron nano X-ray diffraction techniques. We identify perovskite grains from which additional reflections, corresponding to PbBr$_2$, appear as a crystalline degradation phase after fluences of ~200 e$^-$Å$^{-2}$. These changes are concomitant with the formation of small PbI$_2$ crystallites at the adjacent high-angle grain boundaries, with the formation of pinholes, and with a phase transition from tetragonal to cubic. A similar degradation pathway is caused by photon irradiation in nano-X-ray diffraction, suggesting common underlying mechanisms. Our approach explores the radiation limits of these materials and provides a description of the degradation pathways on the nanoscale. Addressing high-angle grain boundaries will be critical for the further improvement of halide polycrystalline film stability, especially for applications vulnerable to high-energy radiation such as space photovoltaics.