论文标题

在视频中检测假面

Detection of fake faces in videos

论文作者

Shamanth, M., Mathias, Russel, MN, Dr Vijayalakshmi

论文摘要

:深度学习方法已被用来创建可能造成隐私,民主和国家安全威胁的应用程序,并可以用来进一步扩大恶意活动。最近,这些深度学习驱动的应用程序之一是综合著名人物的视频。根据《福布斯》的说法,生成性的对抗性网络(gan)每年都会产生虚假的视频,而被称为“ Deeptrace”的组织估计,从2018年到2019年,深层蛋糕的增长增加了84%。它们用于产生和修改人的面貌,大多数现有的虚假视频是个人的,其范围是众所周知的,并且在其上是季节性的,并且在96%的范围内,估计的是96%的概念,估计了这一范围。犯罪。在本文中,确定了可用的视频数据集,并使用验证的模型Blazeface来检测面部,并在数据集中训练了训练的重新网络和X受结构的架构化神经网络,以实现在视频中检测假面的目的。该模型在损耗值和对数损耗值上进行了优化,并在其F1分数上进行了评估。在数据样本上,观察到焦点损失提供了更好的准确性,F1分数和损失,因为焦点损失的伽玛成为一个超级参数。在训练周期中,这在其峰值上提供了大约91%的K折准准确性,并且随着模型的衰减,现实世界的精度会随着时间而变化。

: Deep learning methodologies have been used to create applications that can cause threats to privacy, democracy and national security and could be used to further amplify malicious activities. One of those deep learning-powered applications in recent times is synthesized videos of famous personalities. According to Forbes, Generative Adversarial Networks(GANs) generated fake videos growing exponentially every year and the organization known as Deeptrace had estimated an increase of deepfakes by 84% from the year 2018 to 2019. They are used to generate and modify human faces, where most of the existing fake videos are of prurient non-consensual nature, of which its estimates to be around 96% and some carried out impersonating personalities for cyber crime. In this paper, available video datasets are identified and a pretrained model BlazeFace is used to detect faces, and a ResNet and Xception ensembled architectured neural network trained on the dataset to achieve the goal of detection of fake faces in videos. The model is optimized over a loss value and log loss values and evaluated over its F1 score. Over a sample of data, it is observed that focal loss provides better accuracy, F1 score and loss as the gamma of the focal loss becomes a hyper parameter. This provides a k-folded accuracy of around 91% at its peak in a training cycle with the real world accuracy subjected to change over time as the model decays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源