论文标题
二维多访问网络的编码缓存
Coded Caching for Two-Dimensional Multi-Access Networks
论文作者
论文摘要
本文研究了二维(2D)拓扑中新型的多访问编码缓存(MACC)模型,这是Hachem等人提出的一维(1D)MACC模型的概括。 2D MACC型号由包含$ n $文件的服务器,$ k_1 \ times k_2 $ cache-nodes带有$ m $文件,位于网格上,带有$ k_1 $行和$ k_2 $ columts和$ k_1 \ times k_1 \ times k_1 \ times k_2 $ cache-cache-cache-cache-cache-cache-eversy用户在每个用户附近连接到$ l^2 $ CACHECHECACHEN-NODES。服务器通过无错误的共享链接连接到用户,而用户可以无需成本就可以检索连接的高速缓存节点的缓存内容。我们的目标是最大程度地减少所有可能用户需求的最差传输负载。在本文中,我们首先针对$ k_1 $和$ k_2 $除以$ l $的案例提出了一个分组计划。通过将高速缓存节点和用户划分为$ l^2 $组,以使同一组中的两个用户共享任何缓存节点,我们使用Maddah-Ali和Niesen提出的共享链接编码的缓存方案为每个组。然后,对于满足$ \ min \ {k_1,k_2 \}> l $的任何模型参数,我们提出了一种转换方法,该方法分别从垂直和水平投影中的两类1D MACC方案中构造了2D MACC方案。结果,与基线方案相比,我们可以构建2D MACC方案,以实现最大的局部缓存增益并改善编码的缓存增益,而1D MACC方案的直接扩展。
This paper studies a novel multi-access coded caching (MACC) model in the two-dimensional (2D) topology, which is a generalization of the one-dimensional (1D) MACC model proposed by Hachem et al. The 2D MACC model is formed by a server containing $N$ files, $K_1\times K_2$ cache-nodes with $M$ files located at a grid with $K_1$ rows and $K_2$ columns, and $K_1\times K_2$ cache-less users where each user is connected to $L^2$ nearby cache-nodes. The server is connected to the users through an error-free shared link, while the users can retrieve the cached content of the connected cache-nodes without cost. Our objective is to minimize the worst-case transmission load over all possible users' demands. In this paper, we first propose a grouping scheme for the case where $K_1$ and $K_2$ are divisible by $L$. By partitioning the cache-nodes and users into $L^2$ groups such that no two users in the same group share any cache-node, we use the shared-link coded caching scheme proposed by Maddah-Ali and Niesen for each group. Then for any model parameters satisfying $\min\{K_1,K_2\}>L$, we propose a transformation approach which constructs a 2D MACC scheme from two classes of 1D MACC schemes in vertical and horizontal projections, respectively. As a result, we can construct 2D MACC schemes that achieve maximum local caching gain and improved coded caching gain, compared to the baseline scheme by a direct extension from 1D MACC schemes.