论文标题

3D点云分类的对比度嵌入分布细化和熵意识到的关注

Contrastive Embedding Distribution Refinement and Entropy-Aware Attention for 3D Point Cloud Classification

论文作者

Yang, Feng, Cao, Yichao, Xue, Qifan, Jin, Shuai, Li, Xuanpeng, Zhang, Weigong

论文摘要

从点云中学习强大的表示是计算机视觉领域的一个基本和挑战性的问题。与将RGB像素存储在常规网格中的图像不同,对于点云,点云的基本语义和结构信息是点的空间布局。此外,具有挑战性的内在和背景噪声的属性提出了更多的挑战,可以对云分析提出更多的挑战。一个假设是,分类模型的性能差可以归因于阻碍搜索最佳分类器的难以区分的嵌入功能。这项工作提供了一种新的策略,可以通过对比度学习方法学习强大的表示,该方法可以嵌入任何点云分类网络中。首先,我们提出了一种有监督的对比分类方法,通过改善类内的紧凑性和类间的可分离性来实现嵌入特征分布的细化。其次,解决小型班间紧凑性和阶层间可分离性引起的混乱问题。其次,为了解决某些外观类似类别之间的小类间变化引起的混乱问题,我们提出了一种容易发生的阶级挖掘策略来减轻混乱效应。最后,考虑到嵌入空间中样本簇的异常值可能会导致性能降解,我们设计了一个具有信息熵理论的熵感知的注意模块,以通过测量预测概率的不确定性来识别异常情况和不稳定样本。广泛实验的结果表明,我们的方法通过在现实世界中的scanobjectnn数据集中实现82.9%的准确性,超过了最先进的方法,并且在DCGNN中获得了高达2.9%的高度性能,在PointNet ++中的3.1%,在GBNet中获得2.4%。

Learning a powerful representation from point clouds is a fundamental and challenging problem in the field of computer vision. Different from images where RGB pixels are stored in the regular grid, for point clouds, the underlying semantic and structural information of point clouds is the spatial layout of the points. Moreover, the properties of challenging in-context and background noise pose more challenges to point cloud analysis. One assumption is that the poor performance of the classification model can be attributed to the indistinguishable embedding feature that impedes the search for the optimal classifier. This work offers a new strategy for learning powerful representations via a contrastive learning approach that can be embedded into any point cloud classification network. First, we propose a supervised contrastive classification method to implement embedding feature distribution refinement by improving the intra-class compactness and inter-class separability. Second, to solve the confusion problem caused by small inter-class compactness and inter-class separability. Second, to solve the confusion problem caused by small inter-class variations between some similar-looking categories, we propose a confusion-prone class mining strategy to alleviate the confusion effect. Finally, considering that outliers of the sample clusters in the embedding space may cause performance degradation, we design an entropy-aware attention module with information entropy theory to identify the outlier cases and the unstable samples by measuring the uncertainty of predicted probability. The results of extensive experiments demonstrate that our method outperforms the state-of-the-art approaches by achieving 82.9% accuracy on the real-world ScanObjectNN dataset and substantial performance gains up to 2.9% in DCGNN, 3.1% in PointNet++, and 2.4% in GBNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源