论文标题
熵的奇异性
Singularities From Entropy
论文作者
论文摘要
假设BOUSSO结合,我们证明了一个奇异定理:如果光线进入高渗透区域合同,则至少一个光线必须不完整。 “高渗透性”是指该区域的熵超过其空间边界的Bekenstein-Hawking熵。我们的定理提供了奇异性和量子信息之间的直接联系。高渗透条件取代了Penrose定理中的非差异性假设,因此即使在封闭的宇宙中,我们的定理也适用。例如,在渐近的保姆时空中,可以通过任意迟到的稀释辐射来诊断出大爆炸奇点。在渐近平坦的空间中,可以通过添加软辐射来恢复Penrose定理。
Assuming the Bousso bound, we prove a singularity theorem: if the light rays entering a hyperentropic region contract, then at least one light ray must be incomplete. "Hyperentropic" means that the entropy of the region exceeds the Bekenstein-Hawking entropy of its spatial boundary. Our theorem provides a direct link between singularities and quantum information. The hyperentropic condition replaces the noncompactness assumption in Penrose's theorem, so our theorem is applicable even in a closed universe. In an asymptotically de Sitter spacetime, for example, a big bang singularity can be diagnosed from the presence of dilute radiation at arbitrarily late times. In asymptotically flat space, Penrose's theorem can be recovered by adding soft radiation.