论文标题

在现代CPU/GPU上解锁个性化医疗保健:三向基因相互作用研究

Unlocking Personalized Healthcare on Modern CPUs/GPUs: Three-way Gene Interaction Study

论文作者

Marques, Diogo, Campos, Rafael, Santander-Jiménez, Sergio, Matveev, Zakhar, Sousa, Leonel, Ilic, Aleksandar

论文摘要

全基因组关联研究的发展导致了越来越多的观念,即未来的医疗保健技术将通过依靠基因检测来确定患上疾病的风险,从而将未来的医疗技术受到个性化。为此,引起复杂疾病的基因相互作用的检测构成了重要的应用。与该领域的许多应用类似,使用了一系列患者的遗传信息的广泛数据集(例如单核苷酸多态性),从而导致高计算复杂性和记忆利用率高,从而在靶向现代计算系统中的高表现执行时构成了重大挑战。为了缩小这一差距,这项工作提出了几种新的方法,用于检测现代CPU和GPU中三向基因相互作用,利用不同的优化来充分利用目标体系结构。来自高速缓存的屋顶线模型的关键见解用于确保应用程序对计算设备的适用性。还介绍了所有主要供应商的13个CPU和GPU设备的架构特征的广泛研究,从而可以理解相关的功能,以在此生物信息学领域获得高性能。据我们所知,这项研究是第一个进行上学检测评估的研究。 The proposed approaches are able to surpass the performance of state-of-the-art works in the tested platforms, achieving an average speedup of 3.9$\times$ (7.3$\times$ on CPUs and 2.8$\times$ on GPUs) and maximum speedup of 10.6$\times$ on Intel UHD P630 GPU.

Developments in Genome-Wide Association Studies have led to the increasing notion that future healthcare techniques will be personalized to the patient, by relying on genetic tests to determine the risk of developing a disease. To this end, the detection of gene interactions that cause complex diseases constitutes an important application. Similarly to many applications in this field, extensive data sets containing genetic information for a series of patients are used (such as Single-Nucleotide Polymorphisms), leading to high computational complexity and memory utilization, thus constituting a major challenge when targeting high-performance execution in modern computing systems. To close this gap, this work proposes several novel approaches for the detection of three-way gene interactions in modern CPUs and GPUs, making use of different optimizations to fully exploit the target architectures. Crucial insights from the Cache-Aware Roofline Model are used to ensure the suitability of the applications to the computing devices. An extensive study of the architectural features of 13 CPU and GPU devices from all main vendors is also presented, allowing to understand the features relevant to obtain high-performance in this bioinformatics domain. To the best of our knowledge, this study is the first to perform such evaluation for epistasis detection. The proposed approaches are able to surpass the performance of state-of-the-art works in the tested platforms, achieving an average speedup of 3.9$\times$ (7.3$\times$ on CPUs and 2.8$\times$ on GPUs) and maximum speedup of 10.6$\times$ on Intel UHD P630 GPU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源